

Faculty of Engineering and Technology

Department of Mechanical Engineering

4 Year Full-Time Education Program

Bachelor of Technology (Mechanical Engineering) with specialization in Robotics/ Electric Vehicle/ Computer Science Engineering

With effect from Year 2023

Sl. No.	Topic/Content	Page No.
1	Nature and Extent of the program	3
2	Program Education Objectives (PEOs)	4
3	Graduate Attributes	5
4	Qualifications Descriptors	7
5	Program Outcomes (POs)	8
6	Program-Specific Outcomes (PSOs)	10
7	Course structure	11
8	Semester-wise Course Details	21
	• Semester I	
	• Semester II	
	• Semester III	
	• Semester IV	
	• Semester V	
	• Semester VI	
	Semester VII	
	• Semester VIII	
9	Mapping of Course Outcome, Program Outcomes and Program	646
	Specific Outcomes	
10	Annexure I	653
	Course Plan	
11	Annexure II	654
	Entry, Exit Points	

TABLE OF CONTENTS

HOD, MED

Dean, FEAT

Dean Academics SGTU

1. NATURE AND EXTENT OF THE PROGRAM

B. Tech. in Mechanical Engineering is an undergraduate engineering degree program that focuses on the study of mechanics, energy, and motion. The program is designed to prepare students for a career in the field of mechanical engineering by providing them with the knowledge and skills necessary to design, develop, and maintain machinery and mechanical systems.

The B. Tech. Mechanical Engineering program is typically delivered through a combination of classroom lectures, students interactive sessions, industry expert lectures, seminars, hands-on workshops, live projects, laboratory sessions, and practical training.

The curriculum of the program includes courses in engineering mechanics, thermodynamics, materials science, manufacturing processes, and computer-aided design (CAD). Students also undertake projects and internships to gain hands-on experience in the field of mechanical engineering. Students also opt for minor to expertise him or herself in the booming areas like robotics, electric vehicles and computer science.

Upon completion of the program, graduates can pursue a variety of career paths in the field of mechanical engineering. They can work in industries such as automotive, aerospace, power generation, manufacturing, and robotics. Some common job roles for B. Tech. Mechanical Engineering graduates include design engineer, production engineer, quality control engineer, project engineer, and research and development engineer. They can also pursue higher education and research opportunities in mechanical engineering or related fields.

In conclusion, B. Tech. Mechanical Engineering is an exciting and challenging undergraduate program that offers students a solid foundation in mechanical engineering principles and practical skills. Graduates of this program have a wide range of career opportunities and can make significant contributions to the field of mechanical engineering.

2. PROGRAM EDUCATION OBJECTIVES (PEOs)

After completing B. Tech. Mechanical Engineering, students will be able to:

PEO No.	Education Objective
PEO1	Graduates of the B. Tech. Mechanical Engineering program will
	demonstrate technical proficiency and expertise in core mechanical
	engineering principles, enabling them to effectively contribute to the design,
	analysis, and implementation of mechanical systems and processes.
PEO2	Graduates will be adept at identifying, formulating, and solving complex
	engineering problems, applying their knowledge of mathematics, science,
	and engineering principles. They will possess the ability to adapt to
	changing technological and societal demands, applying critical thinking and
	innovative approaches to overcome challenges.
PEO3	Graduates will understand the ethical and professional responsibilities
	associated with the practice of engineering. They will demonstrate integrity,
	accountability, and a commitment to social, environmental, and economic
	sustainability in their professional endeavors.
PEO4	Graduates will exhibit leadership qualities and entrepreneurial mindset,
	enabling them to initiate and manage engineering projects effectively. They
	will be equipped with the knowledge of business principles and possess the
	skills to work in diverse professional environments or to establish their own
	ventures.
PEO5	Graduates will have a strong sense of social awareness and responsibility,
	recognizing the impact of engineering on society. They will actively
	contribute to the betterment of their communities through engineering
	solutions that address societal needs and concerns.

Sl. No. Attributes Description Apply knowledge of mathematics, science, Engineering Knowledge 1 engineering fundamentals and an engineering specialization to the solution of complex mechanical engineering problems **Problem Analysis** Identify, formulate, research literature and 2 engineering analyze complex problems reaching substantiated conclusions using the first principles of mathematics, natural sciences, engineering sciences mechanical and Engineering 3 Design/ Development of Design solutions for complex mechanical Solutions engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations. 4 Conduct Conduct investigations of mechanical engineering complex problems using researchknowledge based and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions. 5 Modern Tool Usage Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex mechanical engineering activities with an understanding of the limitations. The Engineer and Society Apply reasoning informed by 6 contextual knowledge to assess societal, health, safety,

3. GRADUATE ATTRIBUTES

		legal and cultural issues and the consequent
		responsibilities relevant to professional
		mechanical engineering practice.
7	Environment and Sustainability	Understand the impact of professional
		engineering solutions in societal and
		environmental contexts and demonstrate
		knowledge of and need for sustainable
		development.
8	Ethics	Apply ethical principles and commit to
		professional ethics and responsibilities and
		norms of engineering practice.
9	Individual and Team Work	Function effectively as an individual, and as a
		member or leader in diverse teams and in multi-
		disciplinary settings
10	Communication	Communicate effectively on complex
		mechanical engineering activities with the
		engineering community and with society at
		large, such as being able to comprehend and
		write effective reports and design
		documentation, make effective presentations
		and give and receive clear instructions.
11	Project Management and Finance:	Demonstrate knowledge and understanding of
		engineering and management principles and
		apply these to one's own work, as a member
		and leader in a team, to manage projects and in
		multidisciplinary environments.
12	Life-long Learning:	Recognize the need for and have the
		preparation and ability to Engage in
		independent and life-long learning in the
		broadest context of technological Change.

4. QUALIFICATION DESCRIPTORS:

The B. Tech. Mechanical Engineering program is designed to provide students with a comprehensive education in the principles and practices of mechanical engineering. The qualification descriptor of the B. Tech. Mechanical Engineering program includes:

- 1. Knowledge and Understanding: B. Tech. Mechanical Engineering graduates are expected to have a thorough understanding of the fundamental principles, theories, and concepts of mechanical engineering, including engineering mechanics, thermodynamics, materials science, and manufacturing processes.
- 2. Skills and Abilities: B. Tech. Mechanical Engineering graduates should be able to apply their knowledge and understanding to design, analyze, and optimize mechanical systems and components. They should also have skills in computer-aided design (CAD), computational modeling, and experimental methods.
- 3. Professionalism and Ethics: B. Tech. Mechanical Engineering graduates should have a clear understanding of the ethical and professional responsibilities of engineers, including the importance of safety, sustainability, and social responsibility.
- 4. Practical Experience: B. Tech. Mechanical Engineering programs typically include practical training and work experience opportunities, such as internships, co-operative education, or capstone projects. These experiences are designed to provide students with hands-on experience and prepare them for their future careers.
- 5. Career Opportunities: Graduates of B. Tech. Mechanical Engineering programs can pursue a variety of career paths in industries such as automotive, aerospace, power generation, manufacturing, and robotics. They can work as design engineers, production engineers, quality control engineers, project engineers, and research and development engineers. They can also pursue higher education and research opportunities in mechanical engineering or related fields.

Overall, the B. Tech. Mechanical Engineering qualification descriptor emphasizes the importance of a strong theoretical foundation, practical skills and experience, and ethical and professional conduct. Graduates of B. Tech. Mechanical Engineering programs are well-prepared to pursue a variety of mechanical engineering careers or further education in the field

5. PROGRAM OUTCOME

PO No.	Attribute	Competency
PO1	Engineering	Apply the knowledge of mathematics, science, engineering
	Knowledge	fundamentals, and an engineering specialization in mechanical
		engineering for the solution of complex engineering problems.
PO2	Problem Analysis	Identify, formulate, review research literature, and analyze
		complex mechanical engineering problems reaching
		substantiated conclusions using first principles of
		mathematics, natural sciences, and engineering sciences.
PO3	Problem Analysis	Design solutions for complex mechanical engineering
		problems and design system components or processes that
		meet the specified needs with appropriate consideration for
		public health and safety, and the cultural, societal, and
		environmental considerations.
PO4	Conduct	Use research-based knowledge and research methods
	Investigations of	including design of experiments, analysis and interpretation of
	Complex	data, and synthesis of the information to provide valid
	Problems	conclusions.
PO5	Modern Tools	Create, select, and apply proper procedure, resources, and
	Usage	current engineering and mechanical tools including prediction
		and modeling to complex engineering activities in mechanical
		engineering with an understanding of the limitations.
PO6	The Engineer and	Apply reasoning inferred by the contextual knowledge to
	Society	assess societal, health, safety, legal and cultural issues and the
		consequent responsibilities relevant to the professional
		engineering practice.
PO7	Environment and	Understand the impact of professional engineering solutions in
	Sustainability	societal and environmental contexts, and demonstrate the
		knowledge of, and need for sustainable development.
PO8	Ethics	Apply ethical principles and commit to professional ethics and
		responsibilities and norms of engineering practice.

PO9	Individual and	Function effectively as an individual, and as a member or							
	Team work	leader in diverse teams, and multidisciplinary settings.							
PO10	Communication	Communicate effectively on complex engineering activities							
		with the engineering community and with society at large,							
		such as, being able to comprehend and write effective reports							
		and design documentation, make effective presentations, and							
		give and receive clear instructions.							
PO11	Project	Demonstrate knowledge and understanding of the engineering							
	Management and	and management principles and apply these to one's own							
	Finance	work, as a member and leader in a team, to manage projects							
		and in multidisciplinary environments.							
PO12	Lifelong Learning	Recognize the need for, and have the preparation and ability to							
		engage in independent and life-long learning in the broadest							
		context of technological change.							

6. PROGRAM SPECIFIC OUTCOME

PSO No.	Competency
PSO1	Apply viable aptitudes, learning in significant streams, for example, Thermal,
	Design, Mechatronics, Manufacturing, Robotics, Smart Vehicles, Production and
	Industrial Engineering.
PSO2	Design a system, component, or process to meet desired needs within realistic
	constraints such as economic, environmental, social, political, ethical, health and
	safety, manufacturability, and sustainability
PSO3	Improve team building, teamwork and leadership skills of the students with high
	regard for ethical values and social responsibilities. Communicate effectively and
	demonstrate knowledge of project management and independent research.

7. COURSE STRUCTURE

Course	Course Title) istribut	Marks Distribution			
Code			(Hour	s/Week)			
		L	Т	Р	С	IAE	ESE	Total
	Engineering	3	0	0	3	40	60	100
	Mathematics-I							
	Programming for	2	0	0	2	40	60	100
	Problem-Solving							
	Engineering Workshop	1	0	0	1	40	60	100
	MGE-I	4	0	0	4	40	60	100
	AECC-I	2	0	0	2	20	30	50
	VAC-I	2	0	0	2	20	30	50
	Design Thinking &	0	0	4	2	20	30	50
	Innovation Lab							
	Programming for	0	0	4	2	20	30	50
	Problem-Solving Lab							
	Engineering Workshop	0	0	4	2	20	30	50
	Lab							
	Total	14	0	12	20	260	390	650

SEMESTER – I

Course	Course Title	C	redit D	istribut	ion	Ma	rks Distrib	ution
Code			(Hour	s/Week)			
		L	Т	Р	C	IAE	ESE	Total
	Engineering	3	0	0	3	40	60	100
	Mathematics-II							
	Basics of Electrical &	2	0	0	2	40	60	100
	Electronics							
	Engineering							
	Engineering Graphics	1	0	0	1	40	60	100
	and Design							
	MGE-II	4	0	0	4	40	60	100
	AECC-II	2	0	0	2	20	30	50
	VAC-II	2	0	0	2	20	30	50
	New Age Skills	0	0	4	2	20	30	50
	Basics of Electrical &	0	0	4	2	20	30	50
	Electronics							
	Engineering Lab							
	Engineering Graphics	0	0	4	2	20	30	50
	and Design Lab							
	Total	14	0	12	20	260	390	650

SEMESTER – II

				ILN-		I			
Course	Course Title	C	redit E	Distribut	tion	Marks Distribution			
Code			(Hou	rs/Week)				
		L	Т	Р	C	IAE	ESE	Total	
	Engineering Mechanics	3	0	0	3	40	60	100	
	Engineering	3	0	0	3	40	60	100	
	Thermodynamics								
	Program Electives	3	0	0	3	40	60	100	
	Course - I								
	MGE-III	4	0	0	4	40	60	100	
	AECC-III	2	0	0	2	20	30	50	
	VAC-III	2	0	0	2	20	30	50	
	SEC-I (SolidWorks)	0	0	4	2	20	30	50	
	Engineering Mechanics	0	0	2	1	20	30	50	
	Lab								
	Summer Internship	0	0	2	1	20	30	50	
	Total	17	0	8	21	260	390	650	
-	Minor Degree	L	Т	Р	С	IAE	ESE	Total	
	Minor Elective Course-	3	0	0	3	40	60	100	
	Ι								
	Minor Elective Course-	0	0	2	1	20	30	50	
	I Lab								
	Total	20	0	10	25	320	480	800	

SEMESTER – III

Course	Course Title			istribut		Ma	rks Distrib	ution
Code			(Hour	s/Week)			
		L	Т	Р	С	IAE	ESE	Total
	Strength of Materials	3	0	0	3	40	60	100
	Material Engineering	3	0	0	3	40	60	100
	& Technology							
	Manufacturing	3	0	0	3	40	60	100
	Processes							
	Program Electives	3	0	0	3	40	60	100
	Course - II							
	AECC-IV	2	0	0	2	20	30	50
	VAC-IV	2	0	0	2	20	30	50
	SEC-II (ANSYS)	0	0	4	2	20	30	50
	Strength of Materials	0	0	2	1	20	30	50
	Lab							
	Material Engineering	0	0	2	1	20	30	50
	& Technology Lab							
	Manufacturing	0	0	2	1	20	30	50
	Processes Lab							
	Total	16	0	10	21	280	520	800
]	Minor Degree	L	Т	Р	С	IAE	ESE	Total
	Minor Elective Course-	3	0	0	3	40	60	100
	Π							
	Minor Elective Course-	0	0	2	1	20	30	50
	II Lab							
	Total	19	0	12	25	340	610	950

SEMESTER – IV

Course	Course Title	Cr	edit Di	istributi	Marks Distribution			
Code			(Hours	s/Week)				
		L	Т	Р	C	IAE	ESE	Total
	Kinematics of	3	0	0	3	40	60	100
	Machines							
	Fluid Mechanics	3	0	0	3	40	60	100
	Applied	3	0	0	3	40	60	100
	Thermodynamics							
	Biology for Engineers	3	0	0	3	40	60	100
	Program Electives	3	0	0	3	40	60	100
	Course - III							
	Personality	2*	0	0	-	-	-	-
	Development & Career							
	Building							
	SEC-III (MATLAB)	0	0	4	2	20	30	50
	Kinematics of	0	0	2	1	20	30	50
	Machines Lab							
	Fluid Mechanics Lab	0	0	2	1	20	30	50
	Applied	0	0	2	1	20	30	50
	Thermodynamics Lab							
	Industrial Training - I	0	0	2	1	20	30	50
	Total	15+2*	0	12	21	300	450	750
	Minor Degree	L	Т	Р	С	IAE	ESE	Total
	Minor Elective Course-	3	0	0	3	40	60	100
	III							
	Minor Elective Course-	0	0	2	1	20	30	50
	III Lab							
	Total	18+2*	0	14	25	360	540	900

SEMESTER -- V

Course	Course Title	Cre	edit Di	istributi	on	Marks Distribution			
Code		(Hours	s/Week)					
		L	Т	Р	С	IAE	ESE	Total	
	Dynamics of Machines	3	0	0	3	40	60	100	
	Fluid Machines	3	0	0	3	40	60	100	
	Design of Machine	3	0	0	3	40	60	100	
	Elements								
	Instrumentation and	3	0	0	3	40	60	100	
	Control Engineering								
	Program Electives Course -	3	0	0	3	40	60	100	
	IV								
	Quantitative Aptitude &	2*	0	0	-	-	-	-	
	Logical Reasoning								
	SEC-IV (Digital	0	0	4	2	20	30	50	
	Manufacturing)								
	Dynamics of Machines	0	0	2	1	20	30	50	
	Lab								
	Fluid Machines Lab	0	0	2	1	20	30	50	
	Design of Machine	0	0	2	1	20	30	50	
	Elements Lab								
	Instrumentation and	0	0	2	1	20	30	50	
	Control Engineering Lab								
	Total	15+2*	0	12	21	300	450	750	
	Minor Degree	L	Т	Р	С	IAE	ESE	Total	
	Minor Elective Course-IV	3	0	0	3	40	60	100	
	Minor Elective Course-IV	0	0	2	1	20	30	50	
	Lab								
	Total	18+2*	0	14	25	360	540	900	

SEMESTER –VI

Course	SEIVIESTER - VII Course Course Title Credit Distribution Marks Distribution										
	Course Thie	C				IVIA	li ks Disti id	ution			
Code				s/Week							
		L	Т	Р	C	IAE	ESE	Total			
	Industrial Engineering	3	0	0	3	40	60	100			
	Heat and Mass	3	0	0	3	40	60	100			
	Transfer										
	Automation in	2	0	0	2	40	60	100			
	Manufacturing										
	Machine Learning for	1	0	0	1	40	60	100			
	Mechanical										
	Engineering										
	Program Electives	3	0	0	3	40	60	100			
	Course - V										
	Heat and Mass	0	0	2	1	20	30	50			
	Transfer Lab										
	Automation in	0	0	4	2	20	30	50			
	Manufacturing Lab										
	Machine Learning for	0	0	4	2	20	30	50			
	Mechanical										
	Engineering Lab										
	Industrial Training-II	0	0	2	1	20	30	50			
	Capstone Project	0	0	4	2	20	30	50			
	Total	12	0	16	20	300	450	750			
]	Minor Degree		Т	Р	С	IAE	ESE	Total			
	Minor Elective Course-	3	0	0	3	40	60	100			
	V										
	Minor Elective Course-	0	0	2	1	20	30	50			
	V Lab										
	Total	15	0	18	24	360	540	900			

SEMESTER –VII

Course	Course Title	C	redit D	oistribut	ion	Ma	rks Distrib	ution
Code			(Hour	s/Week)			
		L	Т	Р	С	IAE	ESE	Total
	Operation Research Techniques	3	0	0	3	40	60	100
	Program Electives Course - VI	3	0	0	3	40	60	100
	Entrepreneurship and Digital Product Management	0	0	4	2	20	30	50
	Research Project/ Dissertation	0	0	24	12	80	120	200
	Total	06	0	28	20	180	270	450

SEMESTER –VIII

Note – L: Lecture Hour/week, T: Tutorial Hour/week, P: Practical Hour/week, C: Credits, IAE: Internal Assessment Examination, ESE: End Semester Examination, MGE: Multidisciplinary Generic Electives, AECC: Ability Enhancement Compulsory Courses, VAC: Value Added Courses, SEC: Skill Enhancement Courses.

Multidisciplinary Generic Electives (MGE)

Multidisciplinary Generic Electives is credited and choice-based. The students make a choice from pool of MGE offered by the Faculty under the University. (Reference: University Umbrella Multidisciplinary Generic Electives)

Value Added Courses (VAC)

Value Added Courses is credited and choice-based. The students make a choice from pool of VAC offered by the Faculty under the University. (Reference: University Umbrella Value Added Courses)

Ability Enhancement Compulsory Courses (AECC)

Ability Enhancement Compulsory Courses is credited and choice-based. The students make a choice from pool of AEC offered by the Faculty under the University. (Reference: University Umbrella Ability Enhancement Compulsory Course)

Skill Enhancement Courses (SEC)

Ability Enhancement Compulsory Courses is credited and choice-based. The students make a choice from pool of AEC offered by the Faculty under the University.

Semester III, V & VII

Internship

Semester	Scheme	Duration
Semester III	Summer Internship	4-6 Weeks
Semester V	Industrial Training-I	4-6 Weeks
Semester VII	Industrial Training-II	4-6 Weeks

OVERALL CREDIT DISTRIBUTION TABLE

SEMESTER	HOURS	S PER W	EEK	Total Credit	Marks Distribution			
	L	Т	Р	TC	IAE	ESE	Total	
SEMESTER – I	14	0	12	20	260	390	650	
SEMESTER – II	14	0	12	20	260	390	650	
SEMESTER – III	16	0	10	21	260	390	650	
SEMESTER – IV	16	0	10	21	280	520	800	
SEMESTER – V	15+2*	0	12	21	300	450	750	
SEMESTER – VI	15+2*	0	12	21	300	450	750	
SEMESTER – VII	12	0	16	20	300	450	750	
SEMESTER – VIII	06	0	28	20	180	270	450	
Total	108+4*	0	112	164	2140	3310	5450	

Note – L: Lecture Hour, T: Tutorial Hour, P: Practical Hour, TC: Total Credits, IAE: Internal Assessment Examination, ESE: End Semester Examination.'*': Mandatory course with Non-Credit.

OVERALL CREDIT DISTRIBUTION TABLE WITH MINOR

SEMESTER	HOURS	PER WE	ЕК	Total Credit	Marks Distribution			
	L	Т	Р	TC	IAE	ESE	Total	
SEMESTER – I	14	0	12	20	260	390	650	
SEMESTER – II	14	0	12	20	260	390	650	
SEMESTER – III	19	0	12	25	320	480	800	
SEMESTER – IV	19	0	12	25	340	610	950	
SEMESTER – V	18+2*	0	14	25	360	540	900	
SEMESTER – VI	18+2*	0	14	25	360	540	900	
SEMESTER – VII	15	0	18	24	360	540	900	
SEMESTER – VIII	06	0	28	20	180	270	450	

Total	123+4*	0	122	184	2440	3760	6200

Note – L: Lecture Hour, T: Tutorial Hour, P: Practical Hour, TC: Total Credits, IAE: Internal Assessment Examination, ESE: End Semester Examination.'*': Mandatory course with Non-Credit.

8. SEMESTER-WISE COURSE DETAILS

SEMESTER - I	
--------------	--

Course Title
Engineering Mathematics-I
Programming for Problem-Solving
Engineering Workshop
MGE-I
AECC-I
VAC-I
Design Thinking & Innovation Lab
Programming for Problem-Solving Lab
Engineering Workshop Lab
-

				FA	ACUL	TY OI	F ENC	SINEE	RING	AND	TECHI	NOLOO	GΥ					
Name	of the	Depa	rtmer	nt		(Computer science and engineering											
Name	of the	Prog	ram			E	Bachel	achelor of Technology										
Cours	e Cod	e																
Cours	e Title	9				ŀ	Engineering Mathematics-I											
Acade	mic Y	ear				Ι												
Semes	ter					Ι												
Numb	er of (Credit	S			3	}											
Cours	e Prei	equis	ite			+	-2 mat	h										
Cours	e Syn	opsis				Г	To pro	vide th	e stud	ents w	ith suff	icient k	nowledg	ge in calo	culus and			
						n	natrix	algebr	a, this	can be	e used in	n their	respectiv	e fields.				
Cours	e Out	comes	:			•												
At the																		
CO1	App	ly eler	menta	ry tra	nsform	nations	s to r	educe	the n	natrix	into th	e echel	lon form	and no	ormal form to			
	deter	rmine	its ran	k and	interp	ret the	vario	us solı	itions	of syste	em of li	inear ec	quation.					
CO2	Iden	tify th	ie spec	cial p	roperti	es of	of a matrix such as the eigen value, eigen vector, employ orthogonal								loy orthogonal			
	trans	forma	tions t	o exp	ress th	e matr	rix into	o diago	onal fo	rm, qu	adratic	form a	nd canor	nical form	n.			
CO3	Equi	p then	nselve	s fami	liar w	ith the	functi	ions of	sever	al varia	ables ar	nd mean	n value t	heorems				
CO4			e with	specia	al func	ctions	to eva	luate s	ome p	oroper a	and imp	proper i	integrals	using be	eta and gamma			
		tions.																
Mapp	ing of	Cours	se Out	tcome	s (CO	s) to I	Progra	am Ou	tcom	es (PO	s) & Pr	ogram	Specifi	c Outco	mes:			
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2				
CO1	3	2	-	-	-	-	-	-	-	-	-	1	1	-	1			
CO2	3	2	-	-	-	-	-	-	-	-	-	1	1	-	1			
CO3	3	2	-	-	-	-	-	-	-	-	-	1	1	-	1			
CO4	3	1	-	-	-	-	-	-	-	-	-	1	1	-	1			
Aver	3	1.75	-	-	-	-	-	-	-	-	-	1	1	-	1			
age																		
Cours	e Con	tent:	1	1	1	1	1	1	1	1	1	1	_1	1	1			
	ours/		та	Torra	/Weel	-)				(Hour		<u> </u>		T ()	Hour/Week			

2. 3. 4. m 5. 6. 7. (0 2 2	. Explain Matrices. (C2: Compret . Describe vectors: addition and s	- tent and Competency nension)	3						
1 1. 2. 3. 4. m 5. 6. 7. (0 2 1.	. Explain Matrices. (C2: Compret . Describe vectors: addition and s								
2. 3. 4. m 5. 6. 7. (0 2 2	. Describe vectors: addition and s	nension)							
3. 4. m 5. 6. 7. (0 2 1.									
4. m 5. 6. 7. (0 2 1.	. Demonstrate Linear systems of e	2. Describe vectors: addition and scalar multiplication, matrix multiplication. (C2: Comprehension)							
m 5. 6. 7. (C 2 1.		equations and Linear Independence. (C3: A	Application)						
5. 6. 7. (0 2 1.	. Identify rank of a matrix, invers	e of a matrix, Symmetric, skew-symmetric	and orthogonal						
6. 7. (C 2 1.	natrices. (C1: Knowledge)								
7. (0 2	. Define Determinants; Eigen valu	ues and eigenvectors, eigen bases. (C1: Kn	owledge)						
2 (C	. Demonstrate Diagonalization of	matrices. (C3: Application)							
2 1.	.Illustrate Cayley-Hamilton Theo	rem, Orthogonal transformation and quad	ratic to canonical forms.						
	C3: Application)								
2.	. Describe Cramer's Rule. (C2: C	omprehension)							
	. Implement Gauss elimination ar	nd Gauss-Jordan elimination. (C6: Evaluati	on)						
3.	. Create Gram-Schmidt orthogona	alization. (C5: Synthesis)							
3 1.	. Describe Vector Space, linear de	ependence of vectors, basis, dimension. (C	2: Comprehension)						
2.	. Define Linear transformations (1	maps). (C1: Knowledge)							
3.	. Demonstrate range and kernel of	f a linear map. (C3: Application)							
4.	. Define rank and nullity. (C1: Kr	nowledge)							
5.	. Explain Inverse of a linear trans	formation. (C2: Comprehension)							
6.	. Implement rank-nullity theorem	. (C6: Evaluation)							
7.	. Describe composition of linear r	naps. (C2: Comprehension)							
8.	. Identify Matrix associated with	a linear map. (C1: Knowledge)							
4 1.	. Describe Laplace Transforms &	Inverse Laplace Transforms. (C2: Compre	ehension)						
2.	. Explain solution based on defini	ition, change of scale property. (C2: Comp	rehension)						
3.	. Explain 1st & 2nd shifting prope	erties. (C2: Comprehension)							
4.	. Implement LT division by t, LT	of derivative, LT by multiplication by t. (0	C6: Evaluation)						
5.	5. Define Convolutions & application on LT & Inverse LT. (C1: Knowledge)								

Learning Strategies and Contact Hours

Learning Strategies	Contact Hours
Lecture	32
Practical	
Seminar/Journal Club	2

Small Group Discussion (SGD)	2
Self-Directed Learning (SDL) / Tutorial	1
Problem Based Learning (PBL)	2
Case/Project Based Learning (CBL)	2
Revision	4
Others If Any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Quiz	Mid Semester Examination 2
Seminars	University Examination
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)

Mapping of Assessment with COs

Nature of Assess	ment	CO1	CO2	CO3	CO4
Quiz		✓	✓	✓	✓
Assignment / Pre	sentation	✓	✓	✓	✓
Unit test		✓	✓	✓	✓
Mid Semester Ex	amination 1	✓	✓	✓	✓
Mid Semester Ex	amination 2	✓	✓	 ✓ 	✓
University Exami	nation	✓	✓	✓	✓
Feedback Proces	55	1. Stud	ent's Feedba	ck	
References:	Textbooks: 1. B. S. Grewal, " 2017.	Higher Engineeri	ng Mathema	tics", 44/e,	Khanna Publishers,

2. Erwin Kreyszig, "Advanced Engineering Mathematics", 10/e, John Wiley&
Sons, 2011.
References:
1. N. P. Bali, "Engineering Mathematics", Lakshmi Publications.
2. George B. Thomas, Maurice D. Weir and Joel Hass, "Thomas Calculus",
13/e, Pearson Publishers,
2013.
3. H. K. Dass, "Advanced Engineering Mathematics", S. Chand and complany
Pvt. Ltd.
4. Michael Greenberg, "Advanced Engineering Mathematics", Pearson, Second
Edition.

					ACUL'						TECHN		θY			
Name	of the	Depa	rtmer	nt		C	Compu	ter Sci	ience a	ind En	igineerir	ng				
Name	of the	Prog	rogram Bachelor of Technology													
Cours	e Cod	e														
Cours	e Title	è				P	rogra	mmin	g for 1	Probl	em Solv	ing				
Acade	emic Y	ear				Ι										
Semes	ter					Ι										
Numb	er of (Credit	S			2										
Cours	e Prer	equisi	ite			N	JIL									
Cours	e Syno	opsis				ι	Jnders	tand v	arious	comp	uter con	nponen	ts.			
Cours	e Out	comes	:													
At the																
CO1	Unde	erstand	l vario	ous coi	nputer	r comp	onent	s, desi	gn flo	wchar	t and wr	ite prog	gram in (C progra	mming	
	-	uage.														
CO2		•	•						iber sy							
CO3	Und	erstand	i, expl	ain an	d use	differe	ent dat	a type:	s and c	operato	ors to w	rite pro	grams.			
CO4	Forn	nulate,	evalu	ate an	d anal	yze the	e prob	lems b	y appl	ying p	orogram	ming co	oncepts	using de	cision co	ontrol
		ments		-												
Mapp	ing of	Cours	se Out	tcome	s (CO	s) to F	Progra	m Ou	tcome	es (PO	s) & Pr	ogram	Specific	e Outco	mes:	
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	04
CO1	1	1	1	1	-	-	-	-	-	-	-	1	1	-	1	-
CO2	2	1	-	-	-	-	-	-	-	-	-	-	1	-	1	-
	-	1	-	1	-	-	-	-	-	-	-	-	1	-	1	-
CO3							-	-	3	-	1	-	1	-	1	_
CO3 CO4	1	2	1	2	2	-										
	1 1	2 1.25	1 0.5	2 1	0.5	-	-	-	0.75		0.5	0.5	1		1	
CO4 Aver	1	1.25				-	-	-	0.75		0.5	0.5	1		1	

2	2
Unit	Content and Competency
1	1. Explain the Operating System [Unix, Linux, Windows]. (C2: Comprehension)
	2. Explain the Programming Environment, and Write & Execute the first program. (C2:
	Comprehension)
	3. Recall the purpose Digital Computer. (C1: Knowledge)
	4. Recite the concept of an algorithm, their termination and correctness. (C1: Knowledge)
	5. Analyze Algorithms to programs: specification, top-down development and stepwise refinement.
	(C4: Analysis)
	6. Analyze Programming, Use of high level programming language for the systematic development
	of programs. (C4: Analysis)
	7. Design and implementation of correct, efficient and maintainable programs. (C5: Synthesis)
	8. Describe number systems and conversion methods. (C2: Comprehension)
2	1. Generalize the concept of Standard I/O in "C". (C5: Synthesis)
	2. Explain the concepts of Data Types: Character types, Integer, short, long, unsigned, single and
	double-precision floating point. (C2: Comprehension)
	3. Define storage classes: automatic, register, static and external. (C2: Comprehension)
	4. Analyze the Operators and Expressions: Using numeric and relational operators, mixed operands
	and type conversion, Logical operators, and Bit operations. (C4: Analysis)
3	1. Explain the concepts of Conditional Program Execution: Applying if and switch statements,
	nesting if and else, restrictions on switch values, use of break and default with switch. (C2:
	Comprehension)
	2. Recall the purpose and importance of Program Loops and Iteration: Uses of while, do and for
	loops, multiple loop variables, assignment operators, using break and continue. (C1: Knowledge)
	3. Describe Modular Programming: Passing arguments by value, scope rules and global variables,
	separate compilation, and linkage, building your own modules. (C2: Comprehension)
	4. Outline the purpose and significance of Arrays: Array notation and representation, manipulating
	array elements, using multidimensional arrays, arrays of unknown or varying size. (C1:
	Knowledge)
	5. Explain the principles of Structures: usage of structures, declaring structures, and assigning of
	structures. (C2: Comprehension)
4	1. Recall the purpose and basic functions of Pointers to Objects using pointers as function
	arguments. (C1: Knowledge)

Explain the principles of Dynamic memory allocation. (C2: Comprehension)
 Generalize the concept of Standard C Preprocessor. (C5: Synthesis)
 Defining and calling macros. (C2: Comprehension)
 Explain Standard C Library: Input/Output : fopen, fread, etc, string handling functions, Math functions : log, sin, alike Other Standard C functions. (C2: Comprehension)

Learning Strategies and Contact Hours

Learning Strategies	Contact Hours	
Lecture	20	
Practical		
Seminar/Journal Club	1	
Small Group Discussion (SGD)	1	
Self-Directed Learning (SDL) / Tutorial	1	
Problem Based Learning (PBL)	1	
Case/Project Based Learning (CBL)	2	
Revision	4	
Others If any:		
Total Number of Contact Hours	30	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2
Objective Structured Clinical Examination (OSCE)	University Examination
Objective Structured Practical Examination	Dissertation
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Short Answer Questions (SAQ)
Problem Based Learning (PBL)	Long Answer Question (LAQ)
Journal Club	Practical Examination & Viva-voce
	Objective Structured Clinical Examination
	(OSCE)
	Objective Structured Practical Examination

		(OSPE)

Mapping of Assessment with COs

Nature of Assess	ment	CO1	CO2	CO3	CO4						
Quiz		 ✓ 	✓	 ✓ 	 ✓ 						
VIVA											
Assignment / Pres	sentation	✓	 ✓ 	 ✓ 	✓						
Unit test		✓	✓	✓	✓						
Clinical assessme	nt										
Clinical/Practical	Log Book/ Record Book										
Mid Semester Ex	amination 1	✓	✓	✓	✓						
Mid Semester Ex	amination 2	 ✓ 	1	1	✓						
University Exami	nation	✓	✓	✓	 ✓ 						
Feedback Proces		2. Stud	ent's Feedba								
References:	Textbooks:										
	1. B. S. Grewal "Higher Engineering Mathematics" 44/e, Khanna Publishers, 2017.										
	2. Erwin Kreyszig "Adv	anced Engin	eering Math	ematics" 10	/e_Iohn Wilev&						
	Sons, 2011.										
	References:										
	1. R.K. Jain and S. R.K.	Iyengar "Ad	vanced Engi	neering Mat	hematics" 3/e,						
	Alpha Science Internation	onal Ltd., 20	02.								
	2. George B. Thomas, N	laurice D. W	eir and Joel	Hass, Thorr	as "Calculus" 13/e,						
	Pearson Publishers, 201	Pearson Publishers, 2013									

			I	Facul	lty o	f Eng	ginee	ering	and [Fechr	nolog	у			
Name of t	he De	part	ment			N	Mechanical Engineering								
Name of t	he Pr	ograi	m			E	B. Tec	h.							
Course Co	ode														
Course Ti	tle	Engineering Workshop													
Academic	Year	•				Ι									
Semester						I									
Number o	f Cre	dits				1									
Course Pr	erequ	aisite				N	IIL								
Course Sy	nopsi	is			Engineering Workshop deals with different processes b which components of a machine or equipment are made The subject aims at imparting knowledge and ski components in the field of basic workshop technology. deals with different hand and machine tools required for manufacturing simple metal components and articles.									made. d skill ogy. It red for	
Course Ou	utcon	nes:							-6	- F		<u>r</u>			
At the end	of the	e coui	rse, st	uden	ts wil	l be a	ble to):							
CO1		call th					-	-	sses u	sed in	the in	dustr	y for fal	oricating	2
CO2	Der	nonst	rate t	he ab	ility t	to fab	ricate	com	ponen	ts mar	nually.				
CO3										s achie gnals.		throu	gh diffe	erent	
CO4	Unc		and el				-			-		s and o	design i	ndividu	al
Mapping of Outcomes		urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (]	POs)ð	k Pro	gram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	1	2	-	3	1	-	-	-	-	-	1	3	2	1
CO2	3	2	2	-	-	1	-	-	-	-	2	3	3	2	-
CO3	3	2		-	-	-	-	-	-	-	1	3	3	2	-
CO4	3	2	3	3	1	-	-	-	-	-	2	3	3	2	1
Average	+	<u> </u>	+	ł	l		1			1	1			1	1

	Iours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week
	1	0	0	1
FT •4		_	U	1
Unit		t & Competencies		
1	Recall the di Analyze the Evaluate the Overview of Identify the n Classification Classification Classification Classification Classification Classification Classify man Importance of Assess the si Additive Ma Recognize th Examine the Evaluate the Industrial Sa Recall the fu Differentiate Understandin Analyze acci Common Ca Identify the f Common So Identify com Implement sa Conduct risk First Aid in I Recognize th Demonstrate Manage com Objectives of Understand t	fferent manufacturing pro- classification of manufact significance of manufact Manufacturing Processe nain aspects of manufact n of Manufacturing Process of Manufacturing Process gnificance of manufactur nufacturing (C2, C3) the concept of additive man principles and technique applications and benefits fety: Introduction and Ty ndamental concepts of im between various types of ng Accidents and Their T dents and their categoriz uses of Accidents in Indu frequent reasons behind a urces of Accidents and praction afety methods and praction assessments and apply h industrial Settings (C2, C the importance of providir knowledge of basic first mon workplace injuries a f Layout and Types of PI he goals and objectives of between various types of	turing processes in variou s (C1) curing processes. (C1) esses (C2) ed on their characteristic ses in Various Industries of ring processes in differen unufacturing. (C2) es employed in additive m s associated with additive /pes of Accidents (C1, C2) of accidents. (C2) faccidents. (C2) ypes (C2) ation. (C2) ustrial Settings (C2) accidents in industrial env afety Methods (C2, C3) s in industrial settings. (C ces to prevent accidents in mazard control measures.) and first aid in industrial en- aid techniques and proce and emergencies effective ant Layout (C2, C3)	cation. (C1) as industries. (C2) (C2) t industries. (C2) anufacturing. (C3) manufacturing. (C3) 2) //ironments. (C2) (C3) n the workplace. (C3) (C3) edures. (C3) ely. (C3)

r	
	Understand the differences between hot and cold working processes. (C2)
	Analyze the basic principles of hot and cold working. (C3)
	Hot & Cold Working Processes (C2-C4)
	Explain the overview of the rolling process. (C2)
	Introduce the concept of extrusion. (C2)
	Understand the fundamentals of forging. (C3)
	Provide an introduction to the drawing process. (C3)
	Apply wire drawing techniques. (C4)
	Explain the overview of the spinning process. (C4)
	Sheet Metal Operations (C2-C4)
	Demonstrate measuring, layout marking, and precision techniques. (C2)
	Apply shearing techniques in sheet metal operations. (C3)
	Perform punching, blanking, and piercing processes. (C3)
	Introduce different forming operations. (C3)
	Apply bending techniques in sheet metal operations. (C4)
	Describe various joining methods for sheet metal. (C4)
	Timber: Advantages, Types, and Defects (C1-C2)
	Recognize the advantages and characteristics of timber. (C1)
	Classify different types of timber. (C2)
	Identify common defects in timber and understand their impact. (C2)
	Carpentry Tools and Metal Classification (C2-C3)
	Identify essential carpentry tools and explain their uses. (C2)
	Classify metals based on their properties. (C3)
	Fitting Tools and Operations (C2-C4)
	Provide an overview of fitting tools and their applications. (C2)
	Explain different fitting operations. (C3)
	Demonstrate techniques for precise fitting. (C4)
	Glass Cutting (C2-C3)
	Introduce various glass cutting techniques. (C2)
	Describe the tools and methods used for glass cutting. (C3)
3	Introduction to Casting Processes (C1-C3)
0	Provide an overview of casting processes. (C1)
	Understand patterns and their types. (C2)
	Explain pattern allowances for casting. (C2)
	Introduce sand casting. (C2)
	Understand sand properties and constituents. (C3)
	Explain the preparation of sand molds. (C3)
	Gating System and Melting of Metal (C2-C3)
	Explain the basics of the gating system in casting. (C2)
	Discuss melting techniques for metal casting. (C3)
	Provide an overview of the cupola furnace. (C3)
	Casting Defects and Remedies (C2-C4)
	Identify common casting defects and their causes. (C2)
	Discuss remedies for casting defects. (C3)
	Explain quality control in casting processes. (C4)
	Plastic Molding Techniques (C2-C3)
	Introduce plastic molding techniques. (C2)
	Discuss different plastic molding processes. (C3)
	Metalworking Machines: Lathe, CNC, Shaper, and Planner (C2-C4)
	Provide an overview of the lathe machine. (C2)
	Trovide an overview of the fault machine. (62)

	Explain lathe operations and techniques. (C3) Introduce CNC machining. (C3) Discuss the basics of the shaper and planner machines. (C4) Introduction to Welding (C1-C3) Explain the basics of welding processes. (C1) Classify different welding processes. (C2) Provide an overview of welding equipment and safety measures. (C3) Welding Defects, Remedies, Soldering, and Brazing (C2-C4) Identify common welding defects and their causes. (C2) Discuss remedies for welding defects. (C3) Introduce soldering and brazing techniques. (C4)
4	Electrical Fundamentals (C1-C3) Understand the measurement of voltage, current, frequency, and phase difference. (C2) Perform power and power factor calculations. (C2) Explain single-phase and three-phase supply systems. (C3) Wiring and Circuit Control (C2-C3) Demonstrate the wiring of wire fans and tube lights. (C2) Implement two-way control circuit wiring. (C3) Install MCBs and ELCBs for load circuits. (C3) Electronics Fundamentals (C1-C3) Introduce basic electronic components. (C2) Conduct testing of resistors, inductors, capacitors, and diodes. (C3) Understand the principles of BJTs (Bipolar Junction Transistors). (C3) Testing and Measurement Instruments (C2-C3) Explain the operation and usage of power supplies. (C2) Understand the principles and application of function generators. (C3) Explore the fundamentals of oscilloscope and perform measurements. (C3)

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
Lecture	10
Practical	
Seminar/Journal Club	1
Small Group Discussion (SGD)	1
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	2
Case/Project Based Learning (CBL)	
Revision	1
Others If any:	
Total Number of Contact Hours	15

Assessment Methods:

Formative	Summative						
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term						
Viva-voce							
Objective Structured Practical Examination	University Examination						
(OSPE)							
Quiz	Multiple Choice Questions (MCQ)						
Seminars	Multiple Choice Questions (MCQ)						
Problem-Based Learning (PBL)	Short Answer Questions (SAQ)						
Journal Club	Long Answer Question (LAQ)						
	Practical Examination & Viva-voce						

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4				
Quiz								
VIVA								
Assignment / Presentation	✓	✓	✓	 ✓ 				
Unit test								
Practical Log Book/ Record Book								
Mid-Semester Examination 1	✓	✓	✓	 ✓ 				
Mid-Semester Examination 2	✓	✓	✓	 ✓ 				
University Examination	✓	•	✓	 ✓ 				
Feedback Process	1. Student's Feedback							
	2. Course Exit Survey							
Students Feedback is taken through various 1. Regular feedback through Mentor N	-							

- Feedback between the semester through google forms.
 Course Exit Survey will be taken at the end of semester.

References:	(List of r	(List of reference books)						
	 i) Workshop Technology Vol. I & II - Hazra & Chaudhar Book Comp., New Delhi., Vol-I: ISBN-10: 818509914 II: ISBN: 9788185099156. 							
	ii)	Workshop Technology (Manufacturing Process) –S K Garg, Laxmi Publications; Fourth Edition (2018), ISBN-10: 8131806979						
	iii)	Principles of Manufacturing Materials and Processes - Campbell, J.S McGraw- Hill, NewEdition, ISBN- 10: 0070992525						

]	Facu	lty o	of En	gine	ering	g and	Tec	hnolog	gy				
Name of the Department							Mechanical Engineering									
Name of the Program						E	B. Tec	h.								
Course Code																
Course Title							Desig	n Thi	nkinį	g and	Innova	ation	Lab			
Academ	ic Yea	r				I	Ι									
Semeste	r					I										
Number	of Cr	edits				2										
Course l	Prereq	uisit	e			N	JIL									
Course Synopsis Course Outcomes:					ii o p id c e u	Design Thinking and Innovation is a practical course that introduces students to the principles and methodologies of design thinking, a human-centered approach to problem-solving. This course explores the process of identifying and solving complex problems, fostering creativity, and promoting innovation. Through hands-on exercises, projects, and case studies, students will deeply understand design thinking principles and gain practical skills to apply them in various contexts.										
At the en	nd of th	e cou	irse, s	studer	nts wi	ill be	able	to:								
CO1	App	oly de	esign	think	ing p	rincip	ples to	o gen	erate	innov	vative id	eas ai	nd solut	ions.		
CO2	Dif	feren	tiate ł	oetwe	en tra	aditio	nal p	roble	m-sol	ving	and des	ign th	inking a	approac	hes.	
CO3	Understand the different stages of the design thinking process and apply them in real- world scenarios.											in real-				
CO4	Cre	ate p	rototy	pes f	or co	mple	x pro	blem	s and	valida	ate then	n with	the use	ers.		
Mapping Outcom	-	ourse	Out	come	s (C(Ds) to) Pro	gram	Out	come	s (POs)	& Pr	ogram	Specifi	С	
COs	PO 1	PO 2	PO 2	PO 4	PO 5	PO	PO 7	PO o	PO 0	PO 10	PO11	PO	PSO1	PSO2	PSO3	
CO1	1 2	2 3	3	4	5	6 3	7	8	9 -	10 -	3	12 1	3	2	`1	
CO2	2	3	2	_	-	2	-	-	-	-	2	3	3	2	2	
CO3	2	_	2		_		-	-	-	-		3				
	2	3	2	-	-	3					1	5	3	2	2	

CO4	2	3	3	3	3	2	-	-	-	-	2	3	3	2	1	
Average	2	3	2.5	0.8	1.5	2.5	-	-	-	-	2	2.5	3.0	2.0	1.5	
		1	J	1	J	1	1	I	J			1	1			
Course (Cont	tent:														
L (I	Hours	/Weel	k)		T (E	Iours/	Week)	Р	(Hour	s/Week)	Tota	l Hour/	Week	
	0					0				4	ļ			4		
Sr. No.		Cor	ntent	& C	ompe	tenci	es						1			
1							·		<u> </u>	eek 1-	,	. 1	· · · · · ·		1)	
					U		-		0		0		0	ance (C innova	· ·	
			(C1)	ning			DUSI	511 11	IIIIKII	15 m p	iooicii	1 30111	ing and	miova	.1011	
			· ·	rent S	Stages	s of D	Design	n Thii	nking	(C2)						
			-	thize	: Und	lersta	nding	g the	impoı	tance	of emp	pathy i	n the d	esign pi	ocess	
			(C2)		finin	a tha	nnah	1	totom	antan	d from	in a th	. decie	n ahalla	n co	
			Define: Defining the problem statement and framing the design challenge (C2)													
			(C2) Ideate: Generating creative ideas and exploring multiple solutions (C2)													
						-				-	ns of ic	-		,	, ,	
													er feedb	ack (C2	2)	
											C2-C3)		Dasian	Think		
			(C2)	nymş	g the i	lypes	or pr	obiei	ns tha	u can	benefit	. Iroin	Design	Thinki	ng	
			. ,	zing	how	Desig	gn Th	inkir	ig can	be ap	plied a	across	various	indust	ries	
		Analyzing how Design Thinking can be applied across various industries and disciplines (C3)														
			Case Studies and Videos (C3-C4)													
		Reviewing case studies illustrating the application of Design Thinking in real world scenarios $(C3)$														
			real-world scenarios (C3) Watching videos showcasing Design Thinking processes and outcomes (C3)													
				0				0	0		01					
2			Empa	thize	and	Defin	e(We	eek 3-	-4)							
			Tech	nique	s to L	Jnder	stand	and	Empa	thize	with U	sers' N	Jeeds (C2)		
				-					-		ns (C2		[×]	,		
				-			-		-	•	hnique	s (C2)				
			<u> </u>	00	-	-	•	Ŭ		vities	. ,					
			-	-					-	s (C2) State	ment ((3)				
			•				-						m state	ment (C	3)	
					-		-				statem				-,	
			Focus	sing o	on use	er nee	ds an	d des	sired of	outcor	nes (C	3)				
			Form	ulatir	ng cle	ar an	d con	cise j	proble	em sta	tement	ts (C3)				

	 Creating User Personas and Customer Journey Maps (C3) Developing user personas based on research and insights (C3) Mapping the customer journey to understand the user experience (C3) Analyzing pain points and opportunities for improvement (C3) Incorporating personas and journey maps into the design process (C3) Hands-on Activities and Case Studies (C4) Engaging in hands-on activities to apply user-cantered design techniques (C4) Analysing and discussing case studies illustrating successful user-centred design (C4) Collaborating on design challenges and problem-solving exercises (C4) Reflecting on lessons learned and applying insights to real-world scenarios (C4)
3	Ideation(Week 5-6)
	Methods to Brainstorm Ideas and Approaches (C2)
	Understanding the importance of brainstorming in the ideation process (C2)
	Exploring different brainstorming techniques, such as free association, mind
	mapping, and SCAMPER (C2)
	Stimulating creativity through techniques like analogies, random word
	associations, and reverse thinking (C2)
	Fostering a collaborative and inclusive brainstorming environment (C2)
	Using Criteria to Select the Best Ideas and Approaches (C3)
	Defining evaluation criteria based on project goals, user needs, and feasibility (C3)
	Applying decision matrices or scoring systems to compare and prioritize
	ideas (C3)
	Conducting effective group discussions and consensus-building to select the best ideas (C3)
	Considering the potential impact, viability, and alignment with project
	constraints (C3)
	Hands-on Activities and Creativity Techniques (C3)
	Engaging in hands-on activities, such as design challenges and ideation
	exercises (C3)
	Applying creativity techniques like SCAMPER, mind mapping, random
	stimuli, and role reversal (C3)
	Stimulating divergent thinking through techniques like brainstorming variations and quantity-focused exercises (C3)
	Encouraging experimentation and risk-taking to foster creative thinking (C3)
	Practice Sessions and Case Study Discussions (C4)
	Participating in practice sessions to apply brainstorming and idea selection
	techniques (C4)
	Analyzing and discussing case studies showcasing successful ideation and
	innovation (C4)
	Reflecting on lessons learned and applying insights to real-world challenges

	(C4)
	Collaborating with peers in group activities to share ideas and feedback (C4)
4	Prototype & Test(Week 7-10)
	Designing a Prototype (C2) Understanding the purpose and benefits of prototyping in the design process (C2)
	Selecting appropriate prototyping methods based on project goals and constraints (C2)
	Creating low-fidelity prototypes using paper, cardboard, or digital tools (C2) Developing high-fidelity prototypes using software, 3D printing, or other relevant tools (C2)
	 Approaches to Testing and Validating the Prototype (C3) Defining objectives and research questions for prototype testing (C3) Conducting user testing sessions to gather feedback and insights (C3) Employing methods such as usability testing, A/B testing, and surveys (C3) Iteratively refining and improving the prototype based on user feedback (C3)
	 Hands-on Activities and Design Exercises (C3) Engaging in hands-on activities to create prototypes and iterate designs (C3) Participating in design exercises that simulate real-world challenges (C3) Collaborating with peers to gather feedback and iterate on designs (C3) Applying design principles and user-centered approaches in prototype development (C3)
	Class Presentation of Prototypes (C4)
	Preparing a comprehensive presentation of the prototype, design process, and user feedback (C4)
	Showcasing the functionality, usability, and value of the prototype (C4) Engaging in class discussions and receiving feedback from peers and instructors (C4)
	Reflecting on the design decisions and lessons learned throughout the prototyping process (C4)
5	Implementation Challenges(Week 11-12)
	Overcoming Implementation Challenges (C2)
	Identifying common challenges and barriers when implementing design thinking (C2)
	Developing strategies to overcome resistance and skepticism (C2)
	Creating a supportive organizational culture for design thinking adoption (C2)
	Addressing resource constraints and time limitations (C2)
	Collaborative Approaches to Implement Design Thinking (C3)
	Promoting cross-functional collaboration and teamwork (C3)
	Establishing multidisciplinary design teams for diverse perspectives (C3) Adopting co-creation and participatory approaches (C3)

	Encouraging open communication and knowledge sharing (C3)
	Evaluation Techniques (C3)
	Defining evaluation criteria and metrics for design thinking initiatives (C3)
	Conducting qualitative and quantitative assessments of design thinking
	outcomes (C3)
	Using feedback loops and iterative improvement cycles (C3)
	Incorporating user feedback and stakeholder perspectives in the evaluation
	process (C3)
	Case Study Discussion (C4)
	Analyzing and discussing case studies showcasing successful design
	thinking implementation (C4)
	Extracting lessons learned and best practices from real-world examples (C4)
	Applying insights from case studies to identify opportunities and strategies
	for implementation (C4)
	Engaging in group discussions to reflect on challenges and potential
	solutions (C4)
6	Innovation in Design Thinking (Week 13-14)
	Identifying Innovation in Design Thinking (C2)
	Understanding the role of innovation in design thinking processes (C2)
	Identifying innovative solutions and approaches in real-world design cases
	(C2)
	Analyzing design thinking projects for their innovative aspects (C2)
	Recognizing the impact of innovation on user experiences and business
	outcomes (C2)
	Staying Curious and Seeking New Insights and Ideas (C3)
	Cultivating a mindset of curiosity and openness to new perspectives (C3)
	Actively seeking diverse sources of inspiration and knowledge (C3)
	Applying techniques such as active listening, asking questions, and
	conducting research (C3)
	Embracing a continuous learning approach to stay updated on emerging
	trends (C3)
	Techniques to Enhance Creativity and Overcome Obstacles (C3)
	Exploring techniques for idea generation, such as brainstorming, mind
	mapping, and SCAMPER (C3)
	Overcoming creative blocks and fostering a positive mindset (C3)
	Embracing experimentation and risk-taking to explore unconventional ideas
	(C3)
	Applying problem-solving frameworks to address obstacles and challenges
	(C3)
	Assignment Forum Discussion (C4)
	Engaging in assignment forums to discuss innovation-related topics (C4)
	Sharing perspectives, insights, and experiences with fellow students (C4)
	Providing feedback and constructive criticism to peers (C4)
	Reflecting on and refining ideas through discussions and collaborative
	learning (C4)

7	Final Project Presentation(Week 15)								
	Presentation of Final Project (C4)								
	Preparing a comprehensive presentation of the final design thinking project (C4)								
	Demonstrating the design process, key insights, and solutions (C4) Showcasing the impact and value of the project for users and stakeholders (C4)								
	Engaging the audience through effective storytelling and visual aids (C4) Collecting Feedback and Evaluation Techniques (C4)								
	Implementing techniques to collect constructive feedback on the project (C4)								
	Conducting peer reviews and evaluations to gather diverse perspectives (C4 Incorporating feedback to refine and improve the project (C4)								
	Using evaluation criteria to assess the effectiveness of the project (C4) Final Course Evaluation (C3)								
	Reflecting on the learning outcomes and achievements of the entire course (C3)								
	Assessing personal growth and development in design thinking skills (C3) Identifying strengths, areas for improvement, and future learning goals (C3) Providing an overall evaluation of the course structure, content, and delivery (C3)								
	Final Course Feedback Form (C2)								
	Engaging in a structured feedback process to provide input on the course (C2)								
	Sharing suggestions, comments, and recommendations for improvement (C2)								
	Offering insights on the effectiveness of the course materials and learning activities (C2)								
	Contributing to the continuous improvement of the design thinking program (C2)								

Teaching -	Learning	Strategies	and	Contact	Hours
reaching	Louining	Durungics	unu	contact	IIUuis

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	15	
Seminar/Journal Club		
Small Group Discussion (SGD)	15	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	15	
Case/Project Based Learning (CBL)	15	

Revision	
Others If any:	
Total Number of Contact Hours	60

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Nature of Assessment		CO1	CO2	CO3	CO4
Quiz					
VIVA		✓	✓	✓	✓
Assignment / Presentation					
Unit test					
Practical Log Book/ Record Book		✓	✓	✓	✓
Mid-Semester Examination 1					
Mid-Semester Examination 2					
University Examination		✓	✓	✓	✓
		1	1	1	
Feedback Process	1. Student's Feedbac	ck			
	2. Course Exit Surve	ey			
Students Feedback is taken through 1. Regular feedback through the	-	m.			

2. Feedback	between th	e semester through google forms.							
Course Exit Surve	ey will be t	y will be taken at the end of the semester.							
References:	(List of r	eference books)							
	i)	Innovation By Design by Chakravarthy, Battula Kalyana, and Janaki Krishnamoorthy, Springer India, 2013, ISBN 978-81-							
		322-0901-0							
	ii)	Innovation by Design: How Any Organization Can Leverage Design Thinking to Produce Change, Drive New Ideas, and							
		Deliver Meaningful Solutions by Thomas Lockwood, New Page Books, US; 1st edition (28 November 2017), ISBN:							
		1632651165.							
	iii)	Innovation by Design by Gerard Gaynor, Amacom, A Division							
		of American Management Associ135 West 50th Street New York, NY, United States, ISBN:978-0-8144-0696-0							

				F	aculty	of E	nginee	ering a	nd Tee	chnolo	gy				
Name of the	he Dep	artm	ent			C	ompu	ter Sc	ience I	Engine	ering				
Name of the	ne Pro	gram				B	B. Tech.								
Course Co	ode														
Course Ti	tle					P	rogra	mmir	g for 2	Proble	m Sol	ving L	ab		
Academic	Year					Ι									
Semester						Ι									
Number of Credits					2										
Course Pr	erequi	site				N	IL								
Course Sy	nopsis					U	nders	tand v	arious	compu	iter co	mpone	nts.		
Course Ou	itcome	es:													
At the end	of the	course	e, stud	lents v	vill be	able	to:								
CO1	Und	lerstar	nd var	ious c	ompu	ter co	mpon	ents, c	lesign	flowch	art and	1 write	program	n in C	
	prog	programming language.													
CO2	Ider	ntify a	nd rep	presen	t num	bers i	n diff	erent r	umber	r syster	n.				
CO3	Und	lerstar	nd, ex	plain a	and us	se diff	erent	data ty	pes ar	nd oper	ators t	o write	e progra	ms.	
CO4	For	nulate	e, eval	luate a	and an	alyze	the p	roblen	ns by a	pplyin	g prog	rammi	ng conc	epts usir	ng
	deci	sion c	contro	l state	ments	s and l	oop c	ontrol	atoton	anto					
Monster							-	ontroi	staten	ients.					
wapping (of Cou	rse O	utcon	nes (C	COs) t	o Pro	gram				& Prog	gram (Specific	Outcon	nes:
COs	of Cou	rse O P	utcon P	nes (C P	Р	o Pro P	P	Outco PO	omes (PO	POs)	РО	РО	PSO	PSO	PSO
	P O	P O	P O	P O	P O	P O	P O	Outco	omes ((POs)		-	-		
	Р	Р	Р	Р	Р	Р	P	Outco PO	omes (PO	POs)	РО	РО	PSO	PSO	PSO
COs	P 0 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	Outco PO 8	omes (PO	POs) o PO 10	РО	PO 12	PSO 1	PSO 2	PSO 3
COs CO1	P O 1 3	Р О 2 1	P O 3 2	P O 4 -	P O 5 3	Р О 6 1	P O 7 -	Outco PO 8 -	omes (PO 9 -	POs) (PO 10 -	PO 11 -	PO 12	PSO 1 3	PSO 2 2	PSO 3
COs CO1 CO2	P O 1 3 3	P O 2 1 2	P O 3 2	P 0 4 -	P O 5 3	Р О 6 1	P O 7 -	Outco PO 8 -	omes (PO 9 - -	POs) (PO 10 -	PO 11 - 2	PO 12 1 3	PSO 1 3 3	PSO 2 2 2 2 2	PSO 3
COs CO1 CO2 CO3	P O 1 3 3 3 3 3 3	P 0 2 1 2 2	P O 3 2 2	P O 4 - -	P O 5 3 -	P O 6 1 -	P O 7 - -	Outco PO 8 - -	omes (PO 9 - -	POs) (PO 10 -	PO 11 - 2 1	PO 12 1 3 3	PSO 1 3 3 3	PSO 2 2 2 2 2 2 2	PSO 3 1 -
COs CO1 CO2 CO3 CO4	P O 1 3 3 3 3 3 3 3 3 3	P O 2 1 2 2 2 2 1.8	P O 3 2 2 3	P O 4 - - 3	P O 5 3 - 1	P 0 6 1 -	P O 7 - -	Outco PO 8 - - - -	omes (PO 9 - -	POs) (PO 10 -	PO 11 - 2 1 2	PO 12 1 3 3 3	PSO 1 3 3 3 3	PSO 2 2 2 2 2 2 2 2 2	PSO 3 1 - 1
COs CO1 CO2 CO3 CO4 Average Course Co	P O 1 3 3 3 3 3 3 3 3 3	P O 2 1 2 2 2 2 1.8	P 0 3 2 2 2 3 2.3	P O 4 - - 3	P 05 3 - 1 1.0	P 0 6 1 -	P O 7 - - -	Outco PO 8 - - - -	omes (9 - - - -	POs) (PO 10 -	PO 11 - 2 1 2 1.3 3	PO 12 1 3 3 2.5	PSO 1 3 3 3 3 3 3.0	PSO 2 2 2 2 2 2 2 2 2	PSO 3 1 - 1 0.5

	Content & Competencies						
Sr. No.	Title						
1	 a) Write a C program to find sum and average of three numbers. (C1: Knowledge) b) Write a C program to find the sum of individual digits of a given positive integer. (C1: Knowledge) 						
2	 a) Write a C program to generate the first n terms of the Fibonacci sequence. (C1: Knowledge) b) Write a C program to generate prime numbers from 1 to n. (C1: Knowledge) c) Write a C program to check whether given number is Armstrong Number or not. (C1: Knowledge) 						
3	 a) Write a C program to check whether given number is perfect number or not. (C1: Knowledge) b) Write a C program to check whether given number is strong number or not. (C1: Knowledge) 						
4	 a) Write a C program to find the roots of a quadratic equation. (C1: Knowledge) b) Write a C program to perform arithmetic operations using switch statement. (C1: Knowledge) 						
5	 a) Write a C program to find factorial of a given integer using non-recursive function. (C1: Knowledge) b) Write a C program to find factorial of a given integer using recursive function. (C1: Knowledge) 						
6	a) Write C program to find GCD of two integers by using recursive function.b) Write C program to find GCD of two integers using non-recursive function.						
7	 a) Write a C program to find both the largest and smallest number in a list of integers. (C1: Knowledge) b) Write a C program to Sort the Array in an Ascending Order. (C1: Knowledge) c) Write a C program to find whether given matrix is symmetric or not. (C1: Knowledge) 						
0	Knowledge) a) Write a C program to perform addition of two matrices. (C1: Knowledge)						
8	b) Write a C program that uses functions to perform multiplication of two Matrices.						
	(C1: Knowledge)						
9	 a) Write a C program to use function to insert a sub-string in to given main string from a given position. (C1: Knowledge) b) Write a C program that uses functions to delete n Characters from a given position in 						
10	a given string. (C1: Knowledge)						
10	a) Write C program to count the number of lines, words and characters in a given text.(C1: Knowledge)b) Write a C program to find the sum of integer array elements using pointers. (C1:						

	Knowledge)
11	a) Write a C program to Calculate Total and Percentage marks of a student using
	structure. (C1: Knowledge)
Note:	

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	30	
Seminar/Journal Club		
Small Group Discussion (SGD)	20	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	10	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	60	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Quiz									
VIVA		✓	✓	✓	✓				
Assignment / Prese	entation								
Unit test									
Practical Log Book	x/ Record Book	✓	✓	✓	✓				
Mid-Semester Exam	mination 1								
Mid-Semester Exam	mination 2								
University Examin	ation	✓	 ✓ 	✓	~				
			1						
Feedback Process	1. Student's Feedback	ack							
	2. Course Exit Survey	7							
 Regular fee Feedback b 	is taken through various steps edback through the Mentor Mentee system. between the semester through google forms. It Survey will be taken at the end of the semester	ster.							
References:	Textbooks:								
	1. B. S. Grewal "Higher Engineering Mathematics" 44/e, Khanna Publishers,								
	2017.								
	2. Erwin Kreyszig "Advanced Engineering Mathematics" 10/e, John Wiley&								
	Sons, 2011.								
	References:								
	1. R.K. Jain and S. R.K. Iyengar "Advanced Engineering Mathematics" 3/e, Alpha								
	Science International Ltd., 2002.								
	2. George B. Thomas, Maurice D. Weir and Pearson Publishers, 2013	l Joel Hass	s, Thomas	"Calculus	" 13/e,				

Faculty of Engineering									anu		lolog	у			
Name of th	e De	part	ment			Ν	Iecha	nical	Engin	eering	ç				
Name of th	ograi	m			В	B. Tech.									
Course Coo	de														
Course Tit	le					E	ngin	eering	g Wor	kshop	o Lab				
Academic Y	Year	•				Ι									
Semester						Ι									
Number of	Cre	dits				2									
Course Pre	erequ	iisite				N	IIL								
Course SynopsisEngineering Workshop deals with different pro which components of a machine or equipment a The subject aims at imparting knowledge components in the field of basic workshop techn deals with different hand and machine tools rec manufacturing simple metal components and ar									ent are lge and technol s requin	made. d skill ogy. It red for					
Course Outcomes:															
At the end of	of the	e cou	rse, st	uden	ts wil	l be a	ble to):							
CO1	Rec	all th	e diff	erent	manı	ıfactı	uring	proce	sses c	ommo	only us	sed in	the indu	ustry to	
	fabr	ricate	comp	oner	nts wi	th va	various materials.								
CO2	Den	nonst	rate h	nands	-on fa	brica	tion o	of con	npone	nts.					
CO3		•			al acc			lerano	ces, ar	nd elec	ctrical	signa	ls assoc	iated w	ith
CO4															
Mapping of Outcomes:	f Co	urse	Outc	omes	(CO	s) to	Prog	ram (Jutco	mes (l	POs)&	& Pro	gram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	1	2	-	3	1	-	-	-	-	-	1	3	2	1
CO2	3	2	2	-	-	1	-	-	-	-	2	3	3	2	-
CO3	3	2		-	-	-	-	-	-	-	1	3	3	2	-

CO4	3	2	3	3	1	-	-	-	-	-	2	3	3	2	1
Average	3.0	1.8	2.3	0.8	1.0	0.5	-	-	-	-	1.3	2.5	3.0	2.0	0.5
Course (Cont	ent:													
L (1	Hours	/Week	;)		T (E	Iours/	Week)	P (Hours	/Week))	Total	Hour/	Week
	0					0				4				4	
Sr. No.		Con	ntent	& Co	ompe	tenci	es								
1		leas	t cou		-	_			-					determi uges. (C	
2		C4) To prepare a job on a lathe involving facing, outside turning, taper turning, step turning, radius making and parting-off. (C1-C6)													
3		To study different types of fitting tools and marking tools used in fitting practice. (C1-C3)													
4		To prepare a layout on a metal sheet by making and prepare rectangular tray pipe-shaped components e.g., funnel. (C1-C6)													
5		To prepare joints for welding suitable for butt welding and lap welding. (C1, C2, C3, C6)													
6		To study various types of carpentry tools and prepare simple types of at least two wooden joints. (C1-C4, C6)													
7		Measurement of voltage and current by multimeter and performing testing of various components. (C1-C4)													
8		To study cathode ray oscilloscope and perform measurements for a different signal. (C1-C4)													
9		To study 1) Safety precaution. 2) Electrical safety devices & protection like MCB, ELCB and Fuse. (C1-C3)													
10		1) C	To prepare of wiring diagram 1) Ceiling fan and Tube light 2) Two-way control switch. (C1-C3)												
11		Tos	study	the b	readb	oard	and H	PCB c	onnec	tion f	or Elec	etronic	es circu	it (C1-C	23,

	C6)
12	To study soldering and de-soldering techniques for Electronics circuits. (C1-C3)
13	To study different case studies using Arduino. (C1-C4)
Note:	 At least ten experiments/ jobs are to be performed/ prepared by students in the semester. At least 8 experiments/ jobs should be performed/prepared from the above list; the remaining two may either be performed/prepared from the above list or designed and set as per the scope of the syllabus of the Engineering Workshop.

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	30	
Seminar/Journal Club		
Small Group Discussion (SGD)	20	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	10	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	60	

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	

Journal Club	

Nature of Assess	ment			CO1	CO2	CO3	CO4
Quiz							
VIVA				✓	✓	✓	 ✓
Assignment / Pres	sentation						
Unit test							
Practical Log Boo	ok/ Record	Book		✓	✓	✓	✓
Mid-Semester Ex	amination	1					
Mid-Semester Ex	amination	2					
University Exami	nation			•	✓	✓	✓
Feedback Proces	S		1. Student's Fee	dback			
			2. Course Exit S	burvey			
Students Feedbac	k is taken	through	various steps				
Ū.		0	e Mentor Mentee s				
			ter through google				
			ken at the end of t	he semester.			
References:	(List of r	eference	books)				
	i)	Works	shop Technology V	/ol. I & II - I	Hazra & O	Chaudhary	y, Asian
		Book	Comp., New Delhi	i., Vol-I: ISB	N-10: 81	85099146	, Vol-II:
		ISBN:	9788185099156.				
	ii)		shop Technology (Barg,
			Publications; Fou	rth Edition (2018), IS	BN-10:	
			06979.				
	iii)	-	ples of Manufactur	0			
		1	bell, J.S McGrav	v- H1ll, New	Edition,	ISBN-	
		10:00	70992525				

SEMESTER - II

Course Code	Course Title
	Engineering Mathematics-II
	Basics of Electrical & Electronics Engineering
	Engineering Graphics and Design
	MGE-II
	AECC-II
	VAC-II
	New Age Skills Lab
	Basics of Electrical & Electronics Engineering
	Lab
	Engineering Graphics and Design Lab

				FA	CUL	ГY OF	FENG	INEE	RING	AND '	ΓECHN	IOLOG	Ϋ́			
Name	of the	Depa	rtmen	t		C	Compu	ter Sci	ence l	Engine	ering					
Name	of the	Prog	ram			В	achelo	or of T	'echno	logy						
Course	e Cod	e														
Course	e Title	•				E	Ingine	ering	Math	ematic	s-II					
Acade	mic Y	ear				Ι										
Semest	ter					Π	[
Numb	er of (Credit	s			3										
Course	e Prer	equisi	te			N	IIL									
Course	e Syno	opsis				C	reate	and a	nalyze	mathe	matical	l model	ls using	first an	d higher	order
						d	ifferer	ntial e	quatio	ns to s	olve ap	plicatio	on probl	ems suc	h as ele	ctrical
						c	ircuits	, ortho	ogonal	traject	tories a	nd New	vton's la	w of co	oling an	d also
						fa	amilia	rize th	e stude	ent in v	arious	topics in	n numer	ical anal	lysis suc	h as
						ir	nterpol	lation,	nume	rical d	ifferent	iation,	integrati	on and	direct m	ethods
						fe	or solv	ring lir	near sy	vstem o	f equat	ions.				
Course	e Outo	comes	:													
At the	end of	the co	ourse s	tuden	ts will	be abl	le to:									
CO1	Dem	onstra	te solu	itions	to firs	t ordei	diffei	rential	equat	ions by	v variou	s metho	ods and	solve ba	sic appli	cation
	prob	lem re	lated t	o elec	trical o	circuit	s, orth	ogona	l trajeo	ctory a	nd New	ton's la	w of co	oling.		
CO2	Disc	rimina	te am	ong th	ne stru	cture	and p	rocedu	ire of	solvin	g a hig	gher or	ler diffe	rential of	equation	s with
	cons	tant co	efficie	ents ar	nd vari	able c	oeffici	ents								
CO3	Appl	y vari	ous nu	meric	al met	hods t	o solv	e linea	r and	non-lin	ear equ	ations				
CO4	Fami	liar w	ith nui	nerica	l integ	gration	and d	ifferei	ntiatio	n						
Mappi	ing of	Cours	se Out	come	s (CO	s) to P	rogra	m Ou	tcome	es (POs	s) & Pr	ogram	Specific	: Outco	mes:	
	1				1	n	1	1	n			1	T	T		1
COs	РО	PO	PO	PO	РО	РО	РО	РО	РО	РО	PO	РО	PSO	PSO	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	04
CO1	1 3	2	3	4 2	5	6 -	7	8	9	10 -	11 -	12 1	1	2	3	O4 -
CO1 CO2					5				9 - -	10 - -						O4 - -
	3	2	1	2	5 - - -				9 - - -	10 - - -		1	1	1	1	

Aver age	3	1.75	1	2	-	-	-	-	-	-	-	1	1	0.75	1	-
Course	e Con	tent:														
L (Ho	urs/		T (1	Hours	/Week	;)	F	P (Hou	irs/We	eek)		Т	otal Ho	ur/Wee	k	
Wee	ek)															
3				-					-					3		
Uni	it							Cont	ent ar	nd Con	petenc	y				
1		1. D	efine l	Linear	differ	ential	equat	ions v	vith co	onstant	coeffici	ents: S	olutions	of seco	nd and	higher
		order	r diffe	rential	equat	ions; I	nverse	e diffe	rential	operat	or meth	od. (C1: Kno	wledge)		
		2. Ex	xplain	metho	d of u	ndeter	mined	l coeff	icients	and m	ethod o	f variat	tion of p	arametei	rs. (C2:	
		Com	prehei	nsion)												
2		1. De	escribe	e Linea	ar diffe	erentia	l equa	tions	with v	ariable	coeffici	ients: S	olution	of Cauch	ny's and	
		Lege	ndre's	s linea	r diffe	rential	equat	ions. ((C2: C	ompreł	nension))				
		2. De	efine N	Nonlin	ear dif	ferent	ial equ	ations	s - Equ	ations	solvable	e for p,	equatio	ns solva	ble for y	,
		equa	tions s	solvab	le for y	k, gene	eral an	id sing	ular so	olutions	s. (C1: I	Knowle	edge)			
		3. Im	pleme	ent Cla	airauit	s equa	ations	and eq	quation	ns redu	cible to	Clairau	uit's form	n. (C6: I	Evaluatio	on)
3		1. De	escribe	e Parti	al Diff	erenti	al equ	ations	Form	ulation	of Part	ial diff	erential	equation	s by	
		elimi	inatior	n of ar	bitrary	const	ants/fi	unctio	ns. (C2	2: Com	prehens	ion)				
		2. So	olution	of no	n-hom	ogene	ous Pa	artial c	liffere	ntial eq	uations	by dire	ect integ	ration. (C6:	
		Eval	uation)												
		3. So	olution	of ho	mogen	eous l	Partial	differ	rential	equation	ons invo	olving d	lerivativ	e with re	espect to	one
		inde	pender	nt vari	able or	nly. (C	C6: Ev	aluatio	on)							
		4. De	erivati	on of o	one dii	nensio	onal he	eat and	ł wave	e equati	ons and	l their s	olutions	by varia	able sepa	ırable
			-	C6: Eva		-										
4			•			triple	integra	als: Ev	aluati	on of d	ouble a	nd tripl	e integra	als. (C2:		
		Com	prehei	nsion)												
						-	-	/ chan	ging tł	ne orde	r of inte	gratior	and by	changin	g into po	olar
				es. (C6												
		_	_				_	-					_	plication		
										ons, Re	elation l	betwee	n beta aı	nd gamm	na functi	ons
		and s	simple	probl	ems. (C2: Co	ompre	hensic	on)							

Learning Strategies	Contact Hours	
Lecture	32	
Practical		
Seminar/Journal Club	2	
Small Group Discussion (SGD)	2	
Self-Directed Learning (SDL) / Tutorial	1	
Problem Based Learning (PBL)	2	
Case/Project Based Learning (CBL)	2	
Revision	4	
Others If any:		
Total Number of Contact Hours	45	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Quiz	Mid Semester Examination 2
Seminars	University Examination
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)

Nature of Assessment	C01	CO2	CO3	CO4
Quiz	✓	✓	~	✓
Assignment / Presentation	✓	✓	✓	✓
Unit test	✓	✓	✓	✓
Mid Semester Examination 1	✓	 ✓ 	 ✓ 	✓

Mid Semester Exa	mination 2	✓	✓	✓	\checkmark						
University Examination	nation	✓	✓ ✓ ✓ ✓ ✓								
Feedback Proces	S	1. Student's Feedback									
References:	Textbooks: 1. B. S. Grewal "Highe 2. Erwin Kreyszig "A 2011.				a Publishers, 2017. ⁄e, John Wiley& Sons,						
	Science International L	.td., 2002. s, Maurice D.			athematics" 3/e, Alpha nomas "Calculus" 13/e,						

				FAC	ULT	Y OF I	ENGIN	IEER	ING A	ND TI	ECHN	OLOG	Y			
Name	of the	Depa	artme	nt		C	omput	er scie	ence a	nd engi	ineerin	g				
Name	of the	Prog	ram			В	achelo	r of T	echno	logy						
Course	e Cod	e														
Course	e Title)				В	asics o	of Elec	ctrical	and El	ectroni	ics Eng	gineerin	g		
Acade	mic Y	ear				Ι										
Semes	ter					Ι										
Numb	er of (Credi	ts			2										
Course	e Prer	equis	site			В	asic as	pects	of ele	ctrical	engine	ering.				
Course	e Syno	opsis				T	his cou	ırse gi	ives ic	lea abo	ut basi	c circu	it soluti	ion met	hods,	
						in	troduc	tion to	o elec	trical m	achine	es and	basics c	of dome	stic	
						el	ectrica	ıl insta	allatio	ns						
Course																
At the	end of	the c	ourse	stude	nts w	ill be a	ble to:									
CO1				apply	Kirc	hoff's	laws,	netwo	ork th	eorems	, time	doma	in anal	ysis foi	RL o	& RC
		es circ														
CO2							0				•	•	•	urely in		
	^	ny ca	-	ve as	wen	as sei	ries ar	ia pai	ranei	K-L, K	ι-C α	K-L-V	_ circu	its and	also (circuit
CO3				cepts	of Re	eal. Re	active	& apr	oarent	power	and P	ower f	actor. I	Jndersta	and 3-	phase
				_						ionship						r
CO4	Und	erstar	d abo	ut tvr	bes of	batteri	es & i	ts imr	ortan	t Chara	cterist	ics. Un	derstan	d basic	calcul	ations
001						power		-								
Manni	ing of	Cour	se Or	itcom	es (C	- Os) to	Prog	ram C	Dutcoi	nes (P	() (s) &	Progr	am Spe	cific O	utcom	es:
		0000				0.5) 00	8-					8-	and SPC			••••
COs	Р	Р	Р	Р	Р	PO	PO	Р	Р	PO1	PO	PO	PSO	PSO	PS	PS
	01	02	03	04	05	6	7	08	09	0	11	12	1	2	03	04
CO1	3	1	-	-	1	-	-	-	-	-	-	2	-	-	-	-
CO2	3	1	-	-	1	-	-	-	-	-	-	2	-	1	1	-
CO3	3	1	-	-	1	-	-	-	-	-	-	2	-	-	1	-

CO4	1	-	1	-	-	-	-	-	-	-	-	2	-	-		-	-
Aver age	1.75	-	1	-	-	0.75	-	-	-	-	-	2	-	0.2	25	0.5	-
Course	e Con	tent:															
L			T (1	Hours	s/Wee	k)]	Р		(CL		Tota	l He	our/W	'eek
(Hour	s/W						(Hours	s/Wee	k)	(Hours	s/Weel	K)				
eek	;)																
2		0					0			2	2			2			
Uni	it							Conte	ent						Co	ompet	ency
1			1. E	xplair	n Circu	uit Ana	alysis:	Ohm'	s Law	, KCI	L, KVL	Mesh a	and N	lodal A	nal	ysis. (0	C2:
			С	ompre	ehensi	on)											
			2. D	efine	Circu	it para	meters	s, ener	gy sto	orage a	aspects.	(C1: K	Inowl	edge)			
			3. In	nplem	ent S	uperpo	osition	Theor	rem ai	nd The	evenin's	Theor	rem,				
			4. In	nplem	ent N	orton's	s, Rec	iprocit	y, Ma	ximu	n Powe	r Trans	sfer T	heoren	n, a	nd	
			D	escrit	e Mil	lman's	Theo	rem. (C2: C	ompre	hensior	1)					
			5. D	efine	Star-I	Delta T	ransfo	ormati	on. (C	21: Kn	owledg	e)					
			6. A	pplica	ation o	of theo	rem to	the A	nalys	is of I	D.C. cire	cuits. (C3: A	pplica	tion)	
2			1. E	xplair	n A.C.	Circu	its: R-	L, R-0	C, R-L	C ci	cuits (s	eries a	nd pai	rallel),	Tin	ne	
			С	onsta	nt. (C2	2: Con	nprehe	ension))								
			2. D	escrit	e Pha	se repi	resent	ation.(C2: C	ompr	ehensio	n)					
			3. In	nplem	ent R	espons	se of F	RL, R-	C and	R-L-	C circui	t to sin	usoid	lal inpu	ıt R	esonar	nce-
					•				-		aluation)					
				•	-	ctor. (•		-							
				-		lwidth		-									
							Ray Os	scillos	cope:	Basic	CRO ci	ircuit (Block	t Diagr	am)), (C2:	
				-	ehensi												
			7. D	escrit	e Cat	hode r	ay tub	e (CR	T) & :	its cor	nponent	t. (C2:	Comp	prehen	sion	1)	
3			1. E	xplair	semi	icondu	ctor P	hysics	: Basi	ic con	cepts.(C	2: Cor	npreh	ension	ı)		
			2. D	iffere	ntiate	Intrins	sic and	l extri	nsic se	emico	nductor	s.(C2:	Comp	orehens	sion)	
			3. D	iffere	ntiate	diffusi	ion an	d drift	curre	nts. (O	C2: Con	nprehe	nsion))			
			4. In	nplem	ent P	-N jun	ction	diode:	Ideal	diode	, P-N ju	nction	under	r open-	-circ	cuit an	d
			cl	osed-	circui	t. (C6:	Evalu	ation)									

	5. Describe Diode Current Equation. (C2: Comprehension)
	6. Describe Diode Resistance. (C2: Comprehension)
	7. Demonstrate Transition and Diffusion Capacitance. (C3: Application)
	8. Define Effect of Temperature. (C1: Knowledge)
	9. Define Carrier Life Time. (C1: Knowledge)
	10. Demonstrate Continuity Equation. (C3: Application)
	11. Explain Special Diodes: Zener Diode, Photodiode, Light Emitting Diodes,
	applications of Diodes. (C2: Comprehension)
4	1. Explain Digital Electronics: Boolean algebra. (C2: Comprehension)
	2. Implement Truth tables of logic gates (AND, OR, NOT), NAND, NOR as universal
	gates. (C6: Evaluation)
	3. Define Bipolar junction transistor. (C1: Knowledge)
	4. Describe transistors: construction, transistor operations, BJT characteristics, load
	line, operating point, leakage currents. (C2: Comprehension)
	5. Application of BJT: CB, CE configurations. (C3: Application)
	6. Introduction to FETs and MOSFETs. (C1: Knowledge)

Learning Strategies	Contact Hours	
Lecture	20	
Practical		
Seminar/Journal Club	1	
Small Group Discussion (SGD)	1	
Self-Directed Learning (SDL) / Tutorial	1	
Problem Based Learning (PBL)	2	
Case/Project Based Learning (CBL)	1	
Revision	4	
Others If any:		
Total Number of Contact Hours	30	

Formative	Summative
-----------	-----------

Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Quiz	Mid Semester Examination 2
Seminars	University Examination
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)

Nature of Assess	rment	CO1	CO2	CO3	CO4				
Quiz		✓	✓	✓	✓				
Assignment / Pre	sentation	✓	✓	 ✓ 	✓				
Unit test		✓	✓	✓	✓				
Mid Semester Ex	amination 1	✓	✓	✓	✓				
Mid Semester Ex	amination 2	✓	✓	 ✓ 	✓				
University Exami	nation	~	 ✓ 	✓	✓				
Feedback Proces	6 S	Stud	lent's Feedba	ck					
References:	Textbooks:								
	1. Fundamentals of Electrical Circuits by Charles k.Alexander, Mattew N.O.								
	Saidiku, Tata McGraw Hil	Saidiku, Tata McGraw Hill company.							
	2. V.N. Mittle "Basic Elec	ic Electrical Engineering", Tata McGraw Hill Edition, New							
	Delhi, 1990.								
	3. Electrical Technology b	3. Electrical Technology by Surinder Pal Bali, Pearson Publications.							
	4. R.S. Sedha, "Applied E	pplied Electronics" S. Chand & Co., 2006.							
	5. Electronic Devices and	l Circuits,	, R.L. Boyle	stad and Lo	ouis Nashelsky, 9th				
	edition, PEI/PHI 2006.								
	References:								
	1. Fundamentals of E	lectrical	Engineering	by Rajer	ndra Prasad, PHI				
	Publications, 2nd edition								
	2. Muthusubramanian R	, Salivaha	anan S and	Muraleedh	aran K A, "Basic				
	Electrical, Electronics, and	Electrical, Electronics, and Computer Engineering", Tata McGraw Hill, Second							

Edition, (2006).	
3. Industrial Electronics by G.K. Mittal, PHI	
4. Nagsarkar T K and Sukhija MS, "Basics of Electrical Eng	gineering", Oxford
Press (2005).	

			I	Facu	lty of	f Eng	ginee	ering	and [Fechr	nolog	у			
Name of t	he De	parti	ment			Ν	Iecha	nical	Engin	eering	g				
Name of t	the Pro	ograi	m			В	. Tec	h.							
Course C	ode														
Course T	itle					E	ngin	eerin	g Gra	phics	and I	Design	1		
Academic	: Year					Ι									
Semester						I	[
Number o	of Cree	dits				1									
Course P	rerequ	isite				N	IIL								
Course Sy						Engineering Graphics and Design is considered the language of engineers. This course is introduced to provide basic understanding of the importance of designing aspects in engineering applications. The topic are covered in a sequence and start from the basic concepts of introduction to computer-aided design and then designing of planes and solids. Towards the end of the course, it is expected that students would be matured to visualize the engineering components from and drawing sheet, followed by the projection techniques. number of chosen problems will be solved to illustrat the concepts clearly.						ced to nee of topics basic gn and end of natured n any ues. A			
Course O	utcom	es:													
At the end	l of the	coui	se, st	uden	ts wil	l be a	ble to):							
CO1			nd th wing		izatio	n of c	drawi	ng ins	strume	ents an	nd the	proce	ss of di	nensior	ning
CO2	Acq		skills		sualiz	ation	and	becon	ne pro	ficien	t in en	nployi	ng proj	ection	
CO3	proj	ectio	ns.										ne, plan		olid
CO4	Utilize edges, vertices, and curves to construct accurate and detailed drawings														
														<u></u>	
Mapping Outcomes	of Co		Outc	omes	s (CO	s) to	Prog	ram (Outco						
	of Co		Outc PO 3	omes PO 4	PO 5	s) to PO 6	Prog	ram (PO 8	Dutco PO 9						PSO3

CO2							-	-	-		-	-			
	2	1	1	1	3	-				2			3	2	1
CO3	2	1	1	1	3	-	-	-	-	2	-	-	3	2	1
CO4	2	1	1	1	3	-	-	-	-	2	-	-	3	2	1
Average	2	0.75	1	0.75	3	-	-	-	-	2	-	-	3.0	2.0	1
Course (Cont	ent:													
L (1	Hours	/Week	.)		T (E	Iours/	Week)	P (Hours	/Week))	Total	Hour/	Week
	1					0				0				1	
Unit		Con	tent	& Co	mpe	tenci	es								
2		Und disc Exp Intro Fam Typ Diff Und Dim Exp (C2) Den Typ Intro pers Und The Exp (C3) First Und Exp Proj Den Und	lersta ipling lore t oduct vide a iliari es of erent lersta lain t lore t lersta ory o lain t lore t lersta lain t lersta lain t lersta lain t lersta lain t lersta lain t lersta	nd the es. (C the ap ion to an over ze wi Lines iate b nd lim oning he pri- rate te Projee diffe ve. (C nd the f Orth he pri- the rel gle and he ap n of F rate te	e sign 1) plicat policat policat plicat perview th dras (C1- petween and I incipl echnic ction erent f C2) e purp nografic incipl lation d Thir e diffe plicat Points echnic plicat plicat plicat plicat plicat plicat plicat plicat plicat	ificat tions wing v of e awing (C2) en va tventi- es an ques s (C2) types pose a phic 1 es an ship rd Ar erenc ion a (C3) ques ints a	and b Instru- essent g tools rious ions a ing (0 d pra- for cl 2-C3) of pr and ap Projec d fun betwee ngle P es bei nd us for pr re rep	f engin enefit iment ial dra s and t types nd the C2-C3 ctices ear an ojections dament een ob project tween age of ojecti	neerin s of e s (C1- awing their f of lin eir sig d accu ons, in tions o (C3) ntals o ject as tions (first a f each ng po	nginee C2) instru unctic es use nificat nensio urate 1 ncludi of eact of orth nd ima C3) angle a proje	ohics a ering c ments ons. (C d in en nce. (C oning : etterir ng ort h proj- ograp age in and th ction r	ind drawir lrawir (C1) (C2) in eng in eng in eng in eng in (C2) in eng in crap ection hic pro- ortho ird an metho graph	ering dra ineering 3) phic, iso type. ((ojection graphic gle proj d. (C3) ic drawi) awing. (g drawin ometric, C3) s. (C3) project ections.	(C1) ngs. and ion.
2		Und	lersta	nd lin	es that	at are	paral			r both contai			?) or both	planes.	(C3)

	Project lines that are perpendicular to a plane. (C3) Handle lines that are inclined to one plane and parallel to the other. (C4) Project lines that are inclined to both planes. (C4) Determine the true length of a line and its inclinations to the reference planes. (C4) Identify the traces of a line. (C3) Introduction to Types of Planes (C1) Provide an overview of the different types of planes used in engineering drawing. (C1) Projection of Planes by Change of Position Method (C2-C4) Dreject a plane that is perpendicular to another planes (C2)
	Project a plane that is perpendicular to another plane. (C2) Project a plane that has an axis parallel to both planes. (C3) Project a plane that has an axis parallel to one plane and inclined to the other plane. (C4)
3	Types of Solids (C1) Provide an overview of different types of solids in solid geometry. (C1) Polyhedrons and Solids of Revolution (C2) Understand polyhedrons and their properties. (C2) Introduce solids of revolution. (C2) Projection of Solids (C2-C4) Project solids with axes perpendicular to a plane. (C3) Project solids with axes parallel to both planes. (C4) Project solids with axes parallel to one plane and inclined to the other plane. (C4) Surface Development of Simple Solids (C3-C4) Develop the surface of cubes. (C3) Develop the surface of prisms. (C4) Develop the surface of prisms. (C4) Develop the surface of prisms. (C4) Develop the surface of prisms. (C4)
4	Principle of Projection (C2) Understand the principle of projection in engineering graphics. (C2) Explore the basics of how objects are projected onto planes. (C2) Principal Planes of Projection (C2-C3) Introduce the principal planes of projection. (C2) Understand the relationship between the principal planes. (C2) Apply techniques for selecting the appropriate views from the principal planes. (C3) Projections from Pictorial Views (C3) Perform projections from the front view using first angle projection. (C3) Perform projections from the top view using first angle projection. (C3) Perform projections from the side view using first angle projection. (C3) Perform projections from the front view using first angle projection. (C3) Perform projections from the top view using third angle projection. (C3) Perform projections from the top view using third angle projection. (C3)

Perform projections from the side view using third angle projection. (C3)
Full Sectional View (C3)
Create a full sectional view of an object. (C3)
Understand the purpose and applications of sectional views. (C3)
Isometric Scale and Projection (C3-C4)
Introduce the isometric scale. (C3)
Convert orthographic views into an isometric projection. (C4)
Create an isometric view or drawing. (C4)

Teaching - Learning Strategies	Contact Hours	
Lecture	10	
Practical		
Seminar/Journal Club	1	
Small Group Discussion (SGD)	1	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	2	
Case/Project Based Learning (CBL)		
Revision	1	
Others If any:		
Total Number of Contact Hours	15	

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem-Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)

Practical Examination & Viva-voce
Objective Structured Practical Examination
(OSPE)

Nature of Assessment				CO1	CO2	CO3	CO4			
Quiz										
VIVA										
Assignment / Prese	entation			✓	✓	 ✓ 	✓			
Unit test										
Practical Log Book	k/ Record I	Book								
Mid-Semester Exa	mination 1			✓	 ✓ 	✓	✓			
Mid-Semester Exa	mination 2	2		✓	 ✓ 	✓	✓			
University Examin	ation			✓	 ✓ 	✓	✓			
Feedback Process	;		1. Student's Fe	eedback						
			2. Course Exit	2. Course Exit Survey						
2. Feedback b	edback thro between the	ough the Mentor e semester throu	steps r Mentee system. 1gh google forms he end of the sen	•						
References:		eference books								
	i) ii)	Bhatt, N. D. (2019). Engineering Drawing: Plane and Solid Geometry: [in First Angle Projection Method]. India: Charotar Publishing House Pvt. Limited. ISBN: 9789380358963, 9380358962.								
	iii)	JOHN, K. C.	(2009). Enginee a: PHI Learnin	ring	Grap	,	for			

	Faculty	of Engineering and Technology				
Name of	the Department	Computer Science Engineering				
Name of	the Program	B. Tech.				
Course (Code					
Course 7	Fitle	New Age Skill Lab				
Academ	ic Year	I				
Semester	r	Ш				
Number	Number of Credits 2					
Course I	ourse Prerequisite NIL					
Course S	Synopsis	Knowledge of MS Word, MS Excel, MS PowerPoint, and MS Access.				
Course (Outcomes:					
At the en	d of the course, students will be	able to:				
CO1	Understand the concept of	Understand the concept of MS Word.				
CO2	Understand the concept of MS Excel.					
CO3	Understand the concept of MS PowerPoint.					
CO4	Understand the concept of MS Access.					

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes:

COs	РО	PO	PO	PO	РО	РО	PO	PO	PO	PO	PO1	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	1	12			
CO1	2	1	1	0	3	-	-	-	-	2	1	1	3	2	1
CO2	2	1	1	1	3	-	-	-	-	2	1	1	3	2	1
CO3	2	1	1	1	3	-	-	-	-	2	1	1	3	2	1
CO4	2	1	1	1	3	-	-	-	-	2	1	1	3	2	1
Average	2	1	1	0.75	3	-	-	-	-	2	1	1	3.0	2.0	1
Course Co	ntent:														
L (Hours/Week)					T (Hours/Week)				P (Hours/Week)				Total Hour/Week		
0					0				4				4		
					(Conte	nt &	Comr	etenci	es			I		

Content & Competencies							
Unit	Content						
1	Create a news-paper document with at least 200 words using MS	Word, (C5: Synthesis)					

	 a. Use margins as, top: 1.5, bottom: 2, left: 2, right: 1 inch. b. Use heading "Gandhi Jayanti", font size: 16, font color: red, font face: Arial Black. c. With first letter "dropped" (use drop cap option) of the first paragraph containing a picture at the right side d. Use three columns from the second paragraph onwards till the half of the page. e. Then use heading "Computer basics"
2	Create a Mathematical question paper using MS Word, at least five equations (C5: Synthesis)
	 a. With fractions, exponents, summation function b. With at least one m*n matrix c. Basic mathematical and geometric operators. d. Use proper text formatting, page
	color and page border.
3	Create a flowchart using MS Word, (C5: Synthesis)a. Proper shapes like ellipse, arrows, rectangle, and parallelogram.b. Use grouping to group all the parts of the flowchart into one single object
4	Create a table using table menu with word, (C5: Synthesis)a. At least 5 columns and 10 rows.b. Merge the first row into one cell. c. Merge the second row into one cell, then split the
	second row into three cells
5	 Create a table using MS excel "Student result" with following conditions. a. The heading must contain, Sl. No., Name, Mark1, Mark2, Mark3, Total, average and result with manual entry. (C5: Synthesis) b. Use formulas for total and average. c. Find the name of the students who has secured the highest and lowest marks. d. Round the average to the nearest highest integer and lowest integer (use ceiling and
	floor function respectively).
6	Do as directed using MS excel (C5: Synthesis) a. Create a notepad file as per the following fields SI no name th1 th2 th3 th4 th5 total % grade b. Import this notepad file into excel sheet using ,,data0from text" option. c. Grade is
	calculated as, i. If %>=90, then grade A ii. If %>=80 and =70 and =60 and
7	 Create a power-point presentation with minimum 5 slides. a. The first slide must contain the topic of the presentation and name of the presentation. (C5: Synthesis) b. Must contain at least one table. c. Must contain at least 5 bullets, 5 numbers. d. The heading must be, font size: 32, font-face: Arial Rounded MT Bold, font-color: blue. e. The body must be, font size: 24, font-face: Comic Sans MS, font-color: green. f. Last
	slide must contain ,,thank you"
8	Create a power-point presentation with minimum 10 slides 24 (C5: Synthesis)
0	a. Use word art to write the heading for each slides.b. Insert at least one clip-art, one picturec. Insert at least one audio and one video

	d. Hide at least two slides
9	Create a power-point presentation with minimum 5 slides a. Use custom animation option to animate the text; the text must move left to right one line at a time. (C5: Synthesis) b. Use proper transition for the slides.
10	 Create a database using MS Access "Student" with, (C5: Synthesis) a. At least one table named "mark sheet" with field name "student name, roll number, mark1, mark2, mark3, mark4, total" b. The data types are, student name: text, roll number: number, mark1 to mark4: number, total: number. Roll number must be the primary key. c. Enter data in the table. The total must be calculated using update query. d. Use query for sorting the table according to the descending/ascending order of the total marks
11	 With addition to the table above, (C5: Synthesis) a. Add an additional field "result" to the "mark sheet" table. b. Enter data for at least 10 students c. Calculate the result for all the students using update queries, if total>=200, then pass, else fail. d. Search the students, whose name starts with "sh". e. Show the names and total marks of the students who have passed the examination.
Note:	

Contact Hours	
30	
20	
10	
60	
	30 20 10

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	

Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem-Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessme	ent		CO1	CO2	CO3	CO4				
Quiz										
VIVA				✓	✓	✓	✓			
Assignment / Presen	tation									
Unit test										
Practical Log Book/		✓	✓	✓	✓					
Mid-Semester Exam	ination 1									
Mid-Semester Exam	ination 2									
University Examinat	ion			✓	✓	✓	✓			
Feedback Process		1. Student's Feedback								
2. Course Exit				Survey						
	-									
References:	1. Microsoft Word, Excel,	, and	PowerPoint: Ju	st for Be	ginners, 2	2015				
	2. Microsoft Excel Formu	las &	Functions For	Dummie	es, 5ed, 20	020.				

				F	Faculty	of E	ngine	ering a	ind Te	chnolo	gy					
Name of th	ne Dep	artm	ent			C	Computer Science Engineering									
Name of th	ne Pro	gram				В	B. Tech.									
Course Co	de															
Course Title							Basics of Electrical and Electronics Engineering Lab									
Academic	Year					Ι										
Semester						Π	[
Number of	f Cred	its				2										
Course Pr	erequi	isite				+	2 Phy	sics								
Course Synopsis							To design electrical systems. To analyze a given network by applying various network theorems. To know the response of electrical circuits for different excitations. To study various electrical measuring instruments and transducers. To summarize the performance characteristics of electrical machines									
Course Ou	itcome	es:														
At the end																
CO1						_					cal qua	ntities				
CO2		•				•			k theo							
CO3	Unc	lerstai	nd the	respo	onse of	f diffe	erent ty	ypes o	f elect	rical ci	rcuits (to diff	erent exc	citations		
CO4	Unc	lerstai	nd the	meas	ureme	ent, ca	lculat	ion an	d relat	ion be	tween t	he bas	sic electr	rical para	ameter.	
Mapping o	of Cou	rse O	utcon	nes (C	COs) t	o Pro	gram	Outc	omes ((POs)	& Prog	gram	Specific	Outcon	nes:	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO1	PSO2	PSO3	
CO1	2	-	1	0	3	-	-	-	-	2	-	-	3	2	1	
CO2	2	1	1	1	3	-	-	-	-	2	-	-	3	2	1	
CO3	2	1	1	1	3	-	-	-	-	2	-	-	3	2	1	
CO4	2	1	1	1	3	-	-	-	-	2	-	-	3	2	1	
Average	2	0.75	1	0.75	3	-	-	-	-	2	-	-	3.0	2.0	1	
Course Co	ntent:	:														
L (1	Hours	/Weel	K)		T (H	ours/	Week	:)	P (1	Hours	Week)	Tota	l Hour/	Week	
0						0	0 4 4									

Content & Competencies					
Unit	Title				
1	Familiarization of electrical Elements, sources, measuring devices and transducers				
	related to electrical circuits. (C1: Knowledge)				
2	Verification of KVL and KCL. (C6: Evaluation)				
3	Verification of Thevenin's and Norton's theorems. (C6: Evaluation)				
4	Verification of superposition theorem. (C6: Evaluation)				
5	Verification of maximum power transfer theorem. (C6: Evaluation)				
6	Calculations and Verification of Impedance and Current of RL, RC and RLC series				
	circuits. (C6: Evaluation)				
7	Verification of relation between phase and line quantities in a 3-phase balanced star and				
	delta connected systems. (C6: Evaluation)				
8	Measurement of Active and Reactive Power in a balanced Three-phase circuit. (C6:				
	Evaluation)				
9	Torque-Speed Characteristics of a Separately/Self Excited DC Shunt/Compound				
	Motor. (C1: Knowledge)				
10	Load test on single phase transformer. (C1: Knowledge)				
11	Demonstration of measurement of electrical quantities in DC and AC systems. (C6:				
	Evaluation)				

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	30	
Seminar/Journal Club		
Small Group Discussion (SGD)	20	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	10	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	60	
Aggagement Mathada		

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination (OSPE)	University Examination
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem-Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment		CO1	CO2	CO3	CO4
Quiz					
VIVA		✓	✓	✓	✓
Assignment / Presentation					
Unit test					
Practical Log Book/ Record Book		✓	✓	✓	✓
Mid-Semester Examination 1					
Mid-Semester Examination 2					
University Examination		✓	✓	✓	✓
Feedback Process	1. Student's Fee	dback		_	
	2. Course Exit S	urvey			
References: Electrical and electronics	engineering, person	publicati	on 2017		

			F	Facul	lty of	f Eng	ginee	ring	and 7	Fechn	nolog	у			
Name of th	ne De	parti	ment			N	Iecha	nical	Engin	eering	5				
Name of th	ne Pr	ograi	m			B	B. Tec	h.							
Course Co	de														
Course Tit	le					E	ngin	eerin	g Gra	phics	and E)esign	Lab		
Academic	Year	,				Ι									
Semester						11	[
Number of	f Cre	dits				2									
Course Pro	erequ	isite				N	IIL								
Course SynopsisEngineering Graphics and Design is considered language of engineers. This course is introduced provide basic understanding of the importance designing aspects in engineering applications. The to are covered in a sequence and start from the b concepts of introduction to computer-aided design then designing of planes and solids. Towards the en the course, it is expected that students would be math to visualize the engineering components from drawing sheet, followed by the projection technique number of chosen problems will be solved to illust the concepts clearly.Course Outcomes:									ced to ce of topics basic gn and end of atured n any ues. A						
CO1	Unc	lersta	nd th	e use	of dr	awing	g inst	rumer	nts and	l dime	ension	ing of	given d	lrawing	s.
CO2	Acc	Juire	visual	lizati	on ski	ills ar	ıd use	of pr	ojecti	on me	thods				
CO3	Abl	e to d	lraw o	differ	ent vi	ews ı	ısing	proje	ction of	of line	s, plar	ies an	d solids		
CO4	Use	ofec	lges,	vertic	ces an	id cur	ves to	o cons	struct 1	the dra	awing.	,			
Mapping of Outcomes:		urse	Outc	omes	(CO	s) to	Prog	ram (Outco	mes (l	POs)&	k Pro	gram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	-	1	0	3	-	-	-	-	2	-	-	3	2	1
CO2	2	1	1	1	3	-	-	-	-	2	-	-	3	2	1
CO3	2	1	1	1	3	-	-	-	-	2	-	-	3	2	1
		1	1	1	1	1	1	1	1	1	1	1	1	1	

Average	2	0.75	1	0.75	3	-	-	-	-	2	-	-	3.0	2.0	1
			•												
Course (Cont	ent:													
L (Hours	/Week	;)		T (E	lours/	Week)		P	Hours	/Week)		Total	Hour/	Week
	0					0				4				4	
Unit		(Content & Competencies												
1		Diff	erent	types	of li	nes w	ith ill	ustra	tion a	nd app	olicatio	on (C	1-C3)		
2		Use	of D	rawin	g ins	trume	ents an	ıd un	dersta	nds th	e desi	gn she	eet layo	ut with	
		dim	ensio	ning a	and le	etterir	ng. (C	1-C4)						
3		App	olicati	ons o	f drav	wing	comm	ands	in Au	itoCA	D. (C1	-C4)			
4		Proj	ectio	n of p	oints	in al	l four	quad	rants.	(C1-C	23)				
5		Proj	ectio	n of s	traigh	nt line	es para	ullel,	perpe	ndicul	ar, inc	lined	to proje	ection p	lanes
				s of li		`	,								
6		Proj	ectio	n of p	lane	in per	rpendi	cular	and i	ncline	d posi	tions.	(C1-C3	3)	
7			rojection of cones and solid cylinders with axes parallel, perpendicular and												
			nclined to both the reference planes. (C1-C3)												
8											rallel,	perpe	ndicula	r, and	
							ence p		-						
9				phic p	orojec	tion	of sim	ple n	nachir	ie eler	nents	and er	ngineeri	ng drav	vings.
		Ì	-C4)												
10				e proje	ectior	ı of si	mple	macł	nine el	ement	s and	engin	eering c	lrawing	[S.
		,	-C4)												
11													ng drawi		
Note:													l by stu		
							-	Auto	CAD	softw	are or	on I	Drawing	sheets	using
				rawing				, •	1 1	111		c	1/	1.6	.1
						-					-		ed/prepa		
								-	-		-		ned/prep		
							-			-	the sc	ope o	f the sy	llabus	of the
			E	ngine	ering	Grap	ohics a	na L	esign						

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	30	
Seminar/Journal Club		
Small Group Discussion (SGD)	20	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	10	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	60	

Teaching - Learning Strategies and Contact Hours

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem-Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Mapping of Assessment with COs

Nature of Assessment	C01	CO2	CO3	CO4	
----------------------	-----	-----	-----	-----	--

-

Quiz							
VIVA				✓	✓	✓	✓
Assignment / Prese	entation						
Unit test							
Practical Log Book	k/ Record E	Book		✓	✓	✓	 ✓
Mid-Semester Exa	mination 1						1
Mid-Semester Exa	mination 2						
University Examin	ation			✓	✓	✓	 ✓
							.1
Feedback Process			1. Student's Fe	edback			
			2. Course Exit	Survey			
Ũ	dback thro	ugh the Mentor	r Mentee system.				
			igh google forms he end of the sem				
References:		eference books)					
	i) ii)	Geometry: [i Publishing 2 9380358962.	(2019). Engineeri n First Angle Pro House Pvt. Lin A. Jolhe (2008)	Dijection M mited. IS	Method]. SBN: 9	India: (789380)	Charotar 358963,
	iii)			ring	Grap		for

SEMESTER - III

Course Code	Course Title
	Engineering Mechanics
	Engineering Thermodynamics
Progr	am Electives Course - I
	Refrigeration & Air Conditioning
	Automobile Engineering
	Numerical Methods
	Product Design for Manufacturing
	Composite Materials
	MGE-III
	AECC-III
	VAC-III
	SEC-I (SolidWorks)
	Engineering Mechanics Lab
	Summer Internship
Minor E	lective Course-I (Robotics)
	Robotics Engineering & Applications
	Robotics Engineering & Applications Lab
Minor Electi	ve Course-I (Electric Vehicles)
	Introduction to Hybrid and Electric Vehicles
	Introduction to Hybrid and Electric Vehicles Lab
Minor Elective Cou	rse-I (Computer Science Engineering)

Object-Oriented Programming
Object-Oriented Programming Lab

			I	Facul	lty o	f Eng	ginee	ering	and [Fechi	nolog	у			
Name of t	he De	epart	ment			Ν	Iecha	nical	Engin	eering	g				
Name of t	he Pr	ogra	m			В	. Tec	h.							
Course Co	ode														
Course Ti	Fitle Engineering Mechanics														
Academic	Year	•				I	[
Semester						I	Ι								
Number o	f Cre	dits				3									
Course Pr	erequ	erequisite Engineering Mathematics-I & II													
Course Sy	to problems in mechanics as applied to real-world scenarios. In this subject, students learn how to apply the laws of mechanics to actual engineering problems Through this subject, students develop the analytical skills of splitting the larger practical problems into a number of small problems like make free body diagrams and solve them easily.											-world ply the blems. llytical into a			
Course O	utcon	nes:								5					
At the end	of the	e cou	rse, st	tuden	ts wil	l be a	ble to):							
CO1	Sol	ve the	e engi	ineeri	ng pr	oblen	ns in	case c	of equi	ilibriu	m con	dition	s and c	alculate	the
	read	ction	forces	s of v	ariou	s sup	ports	of dif	ferent	struc	tures.				
CO2	Sol	ve the	e prob	olems	invo	lving	dry f	riction	n and	virtua	l work	. App	ly conc	epts of	
	con	serva	tion o	of ene	ergy a	nd m	omen	tum t	o solv	e real	life p	roblen	ns		
CO3		ermir solid		cent	roid,	centre	e of g	ravity	and n	nome	nt of ii	nertia	of vario	ous surf	aces
CO4		culate emati		outco	me o	f appl	ied fo	orces	acting	on a i	rigid b	ody u	sing pri	nciple o	of
Mapping Outcomes		urse	Outc	omes	s (CO	s) to	Prog	ram (Outco	mes (POs)&	& Pro	gram S	pecific	
1															
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3

CO2	3	2	3		2	3	1	1			2		3	2	3
	5	2	3	-	2	3	1	1	-	-	2	-	5	2	5
CO3	3	3	2	2	2	-	-	-	-	-	-	-	3	3	2
CO4	3	3	2	2	1	-	-	-	-	-	-	-	3	3	2
Average	3	2.75	2.25	2	1.75	0.75	0.5	0.25	-	0.25	2	-	3	2.75	2.25
Course (Cont	ent:													
L (1	Hours	/Week	x)		T (E	lours/	Week)	P ((Hours/	Week))	Total	Hour/	Week
	3					0				0				3	
Unit			Cont	ent a	& Coi	npet	encie	S							
2		Ove Und syst Cop Ana Equ Free Con Equ Sing (C2 Red Equ Ana Intro Met Ider Def Und App Exa (C4 Cha Intro Und Ana App	erview lerstar ems (lanar ilibrin e Bod istruct ilibrin gle Ec -C3) luction ilibrin lysis oduct hod c hod c hod c hod c tificati minir) racter oduct lerstar olicati blems lysis olicati	y of m nding C1) Force of co um co y Dia tion a um co quiva n of r um co of Pl ion to of join of sec tion n of y nding on of n of y nding the ristics ion to of pr of pr on of	necha g fund g fund g fund g fund oplana onditi agram and in onditi lent F multip onditi ane T o plan nts for tions and tr Virtua g the c f the p e relat s of D o dry g g the f olving oblen	nics a amer d Equ r forcons for s and terpre- ons for orce ons for orce e trusse e trusse e trusse anal for do conce orinci ionsh ry Fri friction actor Dry s inv onal	as a b ntal pro- nilibri ces an or par- lequi etatio or par- and E rces t or rig s (C3 sses a yzing eterm ent of rk an pt of ple of ictior on an s affe Fricti force	ranch incipil um of d thei ticles libriu n of fr ticles Equilib o a sir id bod -C4) nd the g force ining E zero- d Prin virtua tween $\overline{1 (C1)}$ d its p cting on (C g dry	of phy es go Parti- r effec in a p m of l ee bo in thr orium agle ed is in the forces force ciple - l worl al worl al worl al worl al worl forces force ciple - l worl al worl al worl frictic 2) frictic	cles (C cts (C2 plane (Particl dy dia ree-din of Rig quivale two d portane russ m s in spe memb of Vir k (C3) rk to a	C1) g the g the 2) C2) e in Sj grams nensic gid Bo ent for imensic gid Bo ent for imensic ce in s ember ecific bers in tual W nalyze lacem	behav pace ((C2) onal sp dies in rce (C3 tructu rss (C3 truss) truss Vork (e mecl ents a C1) 2)	ior of o C2) pace (C2 n Two I (C3) ural anal	2) Dimensi lysis (C rs (C4) systems	ons 3)

	Understanding the behavior of wedges in static equilibrium (C3)
	System of Connected Rigid Bodies (C3)
	Analysis of systems composed of connected rigid bodies (C3)
	Evaluation of forces and moments in interconnected bodies (C3)
	Conservative Forces and Potential Energy (C3-C4)
	Understanding conservative forces and their characteristics (C3)
	Calculation and application of potential energy in mechanical systems (C4)
	Potential Energy Criteria for Equilibrium (C4)
	Application of potential energy criteria to assess equilibrium conditions (C4)
	Determining stable and unstable equilibrium based on potential energy (C4)
	Centroid and Moments of Area (C2)
	Understanding the concept of centroid and its applications (C2)
	Calculation of moments of area using integration methods (C2)
	Theorems of Pappus and Guldinus (C3)
	Application of Pappus and Guldinus theorems for determining areas and
	volumes (C3)
	Analysis of irregular shapes using these theorems (C3)
	Moment and Product of Inertia of Plane Areas (C3-C4)
	Calculation of moment of inertia for different plane areas (C3)
	Determination of product of inertia for composite bodies (C4)
	Transfer Theorems and Polar Moment of Inertia (C4)
	Application of transfer theorems in determining moments of inertia (C4)
	Calculation of polar moment of inertia for circular sections (C4)
	Principal Axes and Mass Moment of Inertia (C4)
	Understanding principal axes and their significance (C4)
	Calculation of mass moment of inertia for rigid bodies (C4)
3	Position, Velocity, and Acceleration (C1)
	Introduction to position, velocity, and acceleration of particles (C1)
	Calculation of displacement, speed, and direction (C1)
	Rectilinear Motion (C2)
	Analysis of motion along a straight line (C2)
	Determination of velocity and acceleration in rectilinear motion (C2)
	Curvilinear Motion of a Particle (C2)
	Study of motion along a curved path (C2)
	Decomposition of motion into tangential and normal components (C2)
	Radial and Transverse Components (C3)
	Analysis of motion components in radial and transverse directions (C3)
	Determination of radial and transverse acceleration (C3)
	Rotation of Rigid Bodies about a Fixed Axis (C3)
	Understanding rotational motion of rigid bodies (C3)
	Calculation of angular displacement, velocity, and acceleration (C3)
	General Plane Motion (C4)
	Analysis of motion in a plane with translation and rotation (C4)
	Calculation of velocity and acceleration components in plane motion (C4)
	Absolute and Relative Motion Method (C4)
	Differentiating between absolute and relative motion methods (C4)
	Enterentiating between absolute and relative motion methods (C1)

	Application of both methods in analyzing motion scenarios (C4)
	Instantaneous Center of Rotation in Plane Motion (C4)
	Determination of instantaneous center of rotation (C4)
	Utilizing the concept of instantaneous center in analyzing plane motion (C4)
	Linear Momentum (C2)
	Introduction to linear momentum and its properties (C2)
	Calculation of momentum for particles and systems of particles (C2)
	Equation of Motion (C3)
	Derivation and application of equations of motion (C3)
	Solving problems involving motion using the equations of motion (C3)
	Angular Momentum (C3)
	Calculation of angular momentum for particles and rigid bodies (C3)
	Understanding the concept of moment of inertia and its significance (C3)
	D'Alembert's Principle (C4)
	Introduction to D'Alembert's principle and its applications (C4)
	Analysis of motion using D'Alembert's principle (C4)
4	Principle of Work and Energy for a Particle (C2)
•	Introduction to the principle of work and energy (C2)
	Calculation of work, potential energy, and kinetic energy (C2)
	Application of the principle of work and energy to analyze particle motion (C2)
	Principle of Work and Energy for a Rigid Body in Plane Motion (C2)
	Extension of the principle of work and energy to rigid bodies (C3)
	Calculation of work, potential energy, and kinetic energy for rigid bodies (C3)
	Application of the principle of work and energy to analyze rigid body motion (C3)
	Conservation of Energy (C4)
	Introduction to the concept of energy conservation (C4)
	Application of energy conservation in analyzing motion and mechanical
	systems (C4)
	Solving problems involving conservation of energy (C4)
	Principle of Impulse and Momentum for a Particle (C2)
	Understanding the principle of impulse and momentum (C2)
	Calculation of momentum and impulse for particles (C2)
	Application of the principle of impulse and momentum in analyzing particle
	motion (C2)
	Principle of Impulse and Momentum for a Rigid Body in Plane Motion (C3)
	Extension of the principle of impulse and momentum to rigid bodies (C3)
	Calculation of momentum and impulse for rigid bodies (C3)
	Application of the principle of impulse and momentum in analyzing rigid body
	motion (C3) Conservation of Momentum (C4)
	Conservation of Momentum (C4)
	Introduction to the concept of momentum conservation (C4)
	Application of momentum conservation in analyzing collisions and motion (C4)
	Solving problems involving conservation of momentum (C4)
	System of Rigid Bodies (C4)
	Understanding systems of connected rigid bodies (C4)

	Analysis of equilibrium and motion of interconnected rigid bodies (C4)
	Application of equations of equilibrium and motion to solve problems (C4)
	Impact and Coefficient of Restitution (C4)
	Introduction to impact and types of impacts (C4)
	Calculation of velocities and energy changes during impacts (C4)
	Understanding the coefficient of restitution and its significance (C4)
	Introduction to Advanced Methods of Structural Analysis (C2)
	Overview of advanced methods for analyzing structures (C2)
	Introduction to recent developments and techniques in structural analysis (C2)
	Recent Methods of Analyzing Structures for Equilibrium (C3)
	Detailed study of advanced methods for analyzing structures (C3)
	Application of advanced methods in solving complex structural analysis
	problems (C3)
1	

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
Lecture	22
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	8
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)

Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessm	nent		CO1	CO2	CO3	CO4
Quiz						
VIVA						
Assignment / Prese	entation		✓	✓	 ✓ 	✓
Unit test						
Practical Log Book	x/ Record Book					
Mid-Semester Exam	mination 1		✓	✓	✓	 ✓
Mid-Semester Examination 2			✓	 ✓ 	 ✓ 	 ✓
University Examin	ation		✓	✓	✓	✓
Feedback Process		1. Student's Fee	edback			
		2. Course Exit S	Survey			
 Regular fee Feedback b 	is taken through various s dback through the Mentor etween the semester throu t Survey will be taken at the	Mentee system. Igh google forms.	ester.			
References:	(List of reference books)					
 i) J. V. Rao, D. H. Young, S. Timoshenko, Sukumar Pati (2013), Engineering Mechanics, Tata McGraw Hill Education. ISBN: 978-1-259-06266-7 ii) Irving H. Shames (2012), Engineering Mechanics – Statics and Dynamics, 4th Edition, Prentice-Hall of India Private limited, ISBN: 978-8-131-72883-3 					nics, 4th	

			I	Facu	lty o	f Eng	ginee	ering	and [Fechr	nolog	у			
Name of the Department					N	Mechanical Engineering									
Name of the Program					В	. Tec	h.								
Course Co	ode														
Course Ti	tle					E	Engineering Thermodynamics								
Academic	Year	•				I	II								
Semester						Π	Ι								
Number o	of Cre	dits				3									
Course Pr	erequ	uisite				+	2 Phy	vsics a	and Cl	nemist	ry				
Course Sy	ourse Synopsis This course provides a basic grounding in the principles methods of classical thermodynamics. It concentrates understanding the thermodynamic laws in relation to fan experience; phase change, ideal gas and flow processes; to sources of data like thermodynamic tables and ch application of the basic principles to the operation of va vapour and gas power cycles; and fuels and combustion.							tes on: amiliar s; using charts; various							
Course O	utcon	nes:							F		,				
At the end	of the	e cou	rse, st	uden	ts wil	l be a	ble to):							
CO1	Tol	learn t	the ba	sic pri	inciple	es of c	lassic	al the	mody	namics					
CO2	O2 To apply the laws of thermody results.					odyna	amics	to var	ious sy	stems	and a	nalyze	the sign	ificance	of the
CO3	Тоа	analyz	the the	perfo	rmanc	e of tl	nermo	dynan	nic gas	and v	apour	power	cycles.		
CO4	Точ	under	stand	the ide	eal ga	s mixt	ures.								
Mapping Outcomes		urse	Outc	omes	s (CO	s) to	Prog	ram (Outco	mes (POs)&	& Pro	gram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	1	3	2	0	2	0	0	0	0	0	2	2	3	1
CO2	3	1	3	2	2	1	2	0	0	0	0	3	1	3	3
CO3	3	3	3	3	0	1	2	0	0	1	0	3	-	3	3
CO4	3	3	1	3	2	2	2	0	0	0	0	3	-	3	2
Average	3	2	2.5	2.5	1	1.5	1.5	0	0	0.25	0	2.75	0.75	3	2.25
Course (Cont	ent:	<u> </u>		<u> </u>	1				<u> </u>		<u>I</u>	I	I	
L (Hours	/Week	x)		T (F	Iours/	Week)	P (Hours	/Week)	Tota	Hour/	Week

UnitContent & Competencies1Basic concepts of Thermodynamics (C1) Understand the fundamental principles and laws of thermodynamics. (C Define thermodynamic systems, surroundings, and boundaries. (C1) Differentiate between closed and open systems. (C1) Identify key components and properties of thermodynamic systems. (C1) Thermodynamics and Energy (C1, C2) Define thermodynamics as the study of energy and its transformations. (C1) Explain different forms of energy (kinetic, potential, internal, and mech (C1) Apply the principle of energy conservation in thermodynamic systems. Understand the concept of work and heat transfer. (C1) Closed and open systems (C1, C2)
 Understand the fundamental principles and laws of thermodynamics. (C Define thermodynamic systems, surroundings, and boundaries. (C1) Differentiate between closed and open systems. (C1) Identify key components and properties of thermodynamic systems. (C1) Thermodynamics and Energy (C1, C2) Define thermodynamics as the study of energy and its transformations. (Explain different forms of energy (kinetic, potential, internal, and mech (C1) Apply the principle of energy conservation in thermodynamic systems. Understand the concept of work and heat transfer. (C1) Closed and open systems (C1, C2)
 Differentiate between closed and open systems in thermodynamics. (C1 Identify examples of closed and open systems in real-world applications Analyze energy interactions between closed and open systems and their surroundings. (C2) Apply the principles of energy conservation and mass flow to closed and systems. (C2) Properties of a system - State and equilibrium (C1, C2) Define thermodynamic properties: pressure, temperature, volume, and n (C1) Understand the concept of a system's state and its dependence on proper (C1) Identify and analyze equilibrium conditions for thermodynamic systems Apply equations of state to describe property relationships. (C2) Processes and cycles (C1, C2, C3) Define thermodynamic processes and cycles. (C1) Differentiate between reversible and irreversible processes. (C2) Analyze characteristics and efficiency of various thermodynamic cycles Apply principles of processes and cycles to solve problems. (C3) Forms of energy. Work and heat transfer (C1, C2) Identify different forms of energy: mechanical, thermal, chemical, and electrical. (C1) Understand the concepts of work and heat transfer in thermodynamic sy (C1) Analyze types of work and heat transfer in thermodynamic processes. (C4) Apply principles of energy conversion through work and heat transfer. (Temperature and Zeroth law of thermodynamics (C1, C2) Define temperature and measurement scales (Celsius, Fahrenheit, Kelvi Understand the concept of thermal equilibrium and the Zeroth law. (C1)

	Define the first law as the conservation of energy principle. (C1)
	Understand the concept of internal energy and its relationship with work and
	heat transfer. (C1)
	Apply the first law to analyze energy balance in closed systems. (C2)
	Apply the first law to steady-state and flow engineering devices. (C3)
	Energy balance for closed systems (C3, C4)
	Apply the concept of energy balance to closed systems undergoing
	thermodynamic processes. (C3)
	Analyze energy transfer through work and heat in closed systems. (C3)
	Solve problems related to energy balance in closed systems. (C4)
	First law applied to steady state and flow engineering devices (C3, C4)
	Apply the first law to steady-state processes in engineering devices. (C3)
	Analyze energy transfer and conversion in steady-state flow systems. (C3)
	Evaluate efficiency and performance of flow engineering devices. (C4)
	Transient flow processes (C3, C4)
	Understand transient flow processes and their significance in thermodynamic
	systems. (C3)
	Analyze time-dependent changes in properties during transient flow processes.
	(C4)
	Apply principles of transient flow processes to solve practical problems. (C4)
	Charging & discharging of tanks (C3, C4)
	Understand the process of charging and discharging tanks in thermodynamic
	systems. (C3)
	Analyze changes in pressure, temperature, and volume during tank charging and
	discharging. (C4)
	Apply principles of energy conservation and mass flow to tank charging and
	discharging. (C4)
2	Limitations of the first law of Thermodynamics (C2, C4)
2	Discuss the limitations of the first law in predicting the direction and feasibility
	of processes. (C2)
	1 · · · ·
	Explain the inability of the first law to account for the quality of energy and the presence of improvementation $(C4)$
	presence of irreversibility. (C4)
	Analyze scenarios where the first law appears to be violated but is consistent
	with the second law of thermodynamics. (C4)
	Thermal energy reservoirs (C1)
	Define thermal energy reservoirs as idealized systems with infinite heat
	capacity. (C1)
	Understand the concept of thermal equilibrium between a reservoir and a
	system. (C1)
	Explain the role of thermal energy reservoirs in establishing reference
	temperatures. (C1)
	Kelvin-Planck statement of the second law of thermodynamics (C2, C4)
	State the Kelvin-Planck statement, which states that no engine can have a
	thermal efficiency of 100%. (C2)
	Understand the concept of heat transfer between reservoirs and working fluids
	in heat engines. (C2)

Analyze the implications of the Kelvin-Planck statement on the design and
operation of heat engines. (C4)
Clausius statement of the second law of thermodynamics (C2, C4)
State the Clausius statement, which states that heat cannot spontaneously flow
from a colder body to a hotter body. (C2)
Understand the concept of entropy and its relationship to heat transfer. (C2)
Analyze the implications of the Clausius statement on the direction of heat
transfer and the feasibility of processes. (C4)
Equivalence of Kelvin-Planck and Clausius statements (C2, C4)
Understand the equivalence between the Kelvin-Planck and Clausius statements
of the second law. (C2)
Explain how the two statements provide complementary perspectives on the
limitations of heat engines and refrigerators. (C4)
Refrigerators, Heat Pumps, and Air Conditioners (C1, C2)
Define refrigerators, heat pumps, and air conditioners as devices that transfer
heat from low-temperature reservoirs to high-temperature reservoirs. (C1)
Explain the working principles and components of refrigeration cycles. (C2)
Analyze the coefficient of performance (COP) as a measure of efficiency for
refrigeration and heat pump systems. (C2)
Perpetual Motion Machines (C1, C4) Define perpetual motion machines as hypothetical devices that violate the laws
of thermodynamics. (C1)
Understand why perpetual motion machines are not possible due to energy
conservation and the second law of thermodynamics. (C4)
Analyze historical attempts to create perpetual motion machines and the reasons
for their failure. (C4)
Reversible and Irreversible processes (C2, C3)
Differentiate between reversible and irreversible processes in terms of the
direction and feasibility of energy transfer. (C2)
Explain the concept of entropy generation in irreversible processes. (C3)
Analyze the characteristics and limitations of reversible and irreversible
processes. (C3)
Carnot cycle (C2, C3)
Explain the Carnot cycle as an idealized reversible thermodynamic cycle. (C2)
Understand the Carnot efficiency as the maximum efficiency achievable by a
heat engine operating between two temperature reservoirs. (C2)
Analyze the temperature-entropy diagram and the processes involved in the
Carnot cycle. (C3)
Entropy (C2, C3)
Define entropy as a measure of the disorder or randomness of a system. (C2)
Understand the relationship between entropy and the second law of
thermodynamics. (C2)
Analyze changes in entropy during reversible and irreversible processes. $(C3)$
The Clausius inequality (C2, C3)
State the Clausius inequality, which relates the heat transfer and the change in (C_{2})
entropy of a system. (C2)

	Understand the implications of the Clausius inequality for the direction and
	feasibility of processes. (C3)
	Apply the Clausius inequality to analyze the entropy changes in various
	thermodynamic processes. (C3)
	Availability and irreversibility (C3, C4)
	Define availability as the maximum useful work that can be obtained from a
	system. (C3)
	Understand the concept of irreversibility and its relationship to the availability
	of energy. (C4)
	Analyze the availability and irreversibility in thermodynamic processes and
	systems. (C4)
3	Properties of pure substance (C1, C2)
	Define pure substances and their characteristics. (C1)
	Identify and describe important properties of pure substances such as
	temperature, pressure, specific volume, and internal energy. (C1)
	Understand the significance of phase changes in pure substances. (C2)
	Analyze the behavior of pure substances under different thermodynamic
	conditions. (C2)
	Property diagram for phase change processes (C1, C2)
	Interpret and construct property diagrams (e.g., temperature-entropy, pressure-
	enthalpy) for phase change processes. (C1)
	Understand the behavior of pure substances during phase transitions (e.g., solid-
	liquid, liquid-vapor). (C2)
	Analyze the changes in properties and energy during phase change processes.
	(C2)
	Carnot vapor cycle (C2, C3)
	Explain the Carnot vapor cycle as an idealized thermodynamic cycle for steam
	power plants. (C2)
	Understand the processes involved in the Carnot vapor cycle, including
	isentropic compression and expansion. (C2)
	Analyze the efficiency and performance of the Carnot vapor cycle. (C3)
	Rankine cycle (C2, C3)
	Define the Rankine cycle as a practical steam power cycle used in power plants.
	(C2)
	Identify and understand the processes in the Rankine cycle, such as heat
	addition, expansion, and condensation. (C2)
	Analyze the efficiency and performance of the Rankine cycle. (C3)
	Combined gas-vapor power cycles (C2, C3)
	Understand combined gas-vapor power cycles that combine gas turbine and $(C2)$
	steam turbine systems. (C2)
	Analyze the advantages and performance characteristics of combined cycles.
	Evaluate the efficiency and power output of combined gas-vapor power cycles.
	(C3)
	Analysis of power cycles (C2, C3)
	Analyze and compare the performance of various power cycles, such as the

	Correct cycle Doubling cycle, and combined cycles (C2)
	Carnot cycle, Rankine cycle, and combined cycles. (C2)
	Evaluate the thermal efficiency, work output, and heat transfer in power cycles.
	(C3)
	Identify factors that affect the performance and efficiency of power cycles. (C3)
	Carnot cycle (C2, C3)
	Understand the Carnot cycle as an idealized reversible thermodynamic cycle.
	(C2)
	Analyze the processes involved in the Carnot cycle, including isothermal
	expansion and compression. (C2)
	Calculate the maximum efficiency of a Carnot cycle. (C3)
	Conditions for exact differentials (C3)
	Understand the concept of exact differentials in thermodynamics. (C3)
	Identify the conditions for a differential to be exact. (C3)
	Apply the concept of exact differentials in thermodynamic analysis. (C3)
	Maxwell relations (C3)
	Understand the Maxwell relations as mathematical relationships among partial
	derivatives of thermodynamic properties. (C3)
	Apply Maxwell relations to analyze the behavior of thermodynamic systems.
	(C3)
	Use Maxwell relations to derive additional relationships between (C^2)
	thermodynamic properties. (C3)
	Clapeyron equation (C3)
	Define the Clapeyron equation as an equation that relates the rate of change of
	pressure with temperature during phase transitions. (C3)
	Understand the significance of the Clapeyron equation in understanding phase
	changes. (C3)
	Apply the Clapeyron equation to analyze phase transition processes. (C3)
	Joule-Thompson coefficient and Inversion curve (C3)
	Define the Joule-Thompson coefficient as a measure of the temperature change
	during a throttling process. (C3)
	Understand the concept of the inversion curve and its relationship to the Joule- Thompson effect (C_{2})
	Thompson effect. (C3)
	Analyze the behavior of a substance during a Joule-Thompson process and its
	implications for cooling or heating applications. (C3)
4	Ideal and real gases (C1, C2)
	Differentiate between ideal and real gases based on their behavior. (C1)
	Understand the assumptions and limitations of the ideal gas law for describing
	real gases. (C2)
	Analyze the deviations of real gases from ideal behavior under different
	conditions. (C2)
	Van der Waals equation (C2, C3)
	Explain the Van der Waals equation as a modification of the ideal gas law to
	account for intermolecular forces and molecular volume. (C2)
	Understand the parameters in the Van der Waals equation and their physical
	significance. (C2)
	Analyze the behavior of real gases using the Van der Waals equation. (C3)

Principle of corresponding states (C2, C3)
Describe the principle of corresponding states, which states that gases at the
same reduced conditions exhibit similar behavior. (C2)
Understand the reduced properties and their use in comparing gases. (C2)
Analyze the behavior of gases using the principle of corresponding states. (C3)
Ideal gas equation of state and other equations of state (C1, C2)
State the ideal gas equation of state and its applicability to ideal gases. (C1)
Introduce other equations of state, such as the Virial equation and the Redlich-
Kwong equation. (C2)
Analyze the advantages and limitations of different equations of state for
describing real gases. (C2)
Compressibility factor (C2, C3)
Define the compressibility factor as the ratio of the actual volume to the volume
predicted by the ideal gas law. (C2)
Understand the significance of the compressibility factor in characterizing gas
behavior. (C2)
Analyze the behavior of gases using the compressibility factor and its
relationship to the equation of state. (C3)
Evaluating internal energy, enthalpy, entropy, and specific heats (C2, C3)
Understand the definitions and physical significance of internal energy,
enthalpy, entropy, and specific heats. (C2)
Apply the first law of thermodynamics to evaluate changes in internal energy
and enthalpy. (C3)
Use equations and relationships to calculate changes in entropy and specific
heats for ideal and real gases. (C3)

Teaching -	Learning	Strategies	and Conta	ct Hours
-------------------	----------	------------	-----------	----------

Teaching - Learning Strategies	Contact Hours
Lecture	25
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment	C01	CO2	CO3	CO4	
Quiz					
VIVA					
Assignment / Presentation		✓	✓	✓	✓
Unit test					
Practical Log Book/ Record Book					
Mid Semester Examination 1		✓	✓	✓	✓
Mid Semester Examination 2		✓	✓	✓	✓
University Examination		✓	 ✓ 	 ✓ 	 ✓
Feedback Process	1. Student's Fe	eedback			
	2. Course Exit	Survey			
Students Feedback is taken through various s 1. Regular feedback through the Mentor	-				

- Feedback between the semester through google forms.
 Course Exit Survey will be taken at the end of the semester.

References:	(List of re	eference books)
	i)	P.K. Nag, Basic and Applied Thermodynamics, Tata McGraw-
		Hill Publishing Company Ltd., ISBN-978-0-070-15131-4
	ii)	Yunus A. Cengel, Thermodynamics: An Engineering
		Approach, Tata McGraw-Hill Publishing Company Ltd.,
		ISBN978-0-073-30537-0
	iii)	C.P. Arora, Thermodynamics, Tata McGraw Hill Publishing
		Company Ltd., ISBN-978-0-074-62014-4

			I	Facu	lty of	f Eng	ginee	ering	and 7	Fechr	nolog	у			
Name of t	the Department					Ν	Mechanical Engineering								
Name of t	the Program					В	B. Tec	h.							
Course Co	ode														
Course Ti	tle					R	Refrig	erati	on & .	Air C	onditi	ioning	3		
Academic	Year	•				Π	[
Semester						Π	Ι								
Number o	f Cre	dits				3									
Course Pr	erequ	uisite				+	2 Phy	sics a	and Cł	nemist	ry				
Course Sy	nops	is				R	lefrig	eratio	n and	l air	cond	itioniı	ng is 1	used to	o cool
						p	roduc	ts or	a buil	ding e	enviro	nment	t. The re	efrigera	tion or
						a	ir con	ditior	ning sy	ystem	transf	ers he	eat from	a coole	er low-
						e	nergy	reser	voir to	o a wa	rmer l	high-e	energy r	eservoi	r.
Course O	utcon	nes:													
At the end	of the	e cou	rse, st	tuden	ts wil	l be a	ble to):							
CO1	Pos	sess t	he kr	nowle	dge o	of syst	tem c	ompo	nents	of refi	rigerat	ion a	nd air co	ondition	ing.
CO2	Des	sign a	nd in	plem	nent re	efrige	ratior	n and	air coi	nditio	ning s	ystem	s using	standar	ds.
CO3	App	oly th	e kno	wled	ge of	psycl	sychrometry in calculating cooling load and heating load								
	calc	culation	ons.												
CO4	App	oly th	e kno	wled	ge of	syste	m co	mpon	ents of	f refri	geratio	on and	l air cor	ditioni	ng.
Mapping		urse	Outc	omes	s (CO	s) to	Prog	ram (Outco	mes (POs)&	& Pro	gram S	pecific	
Outcomes COs	: PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	3	1	2	1	-	-	-	-	3	3	3	1
CO2	3	2	3	3	2	2	2	-	-	-	-	2	3	3	3
CO3	3	3	3	3	2	2	2	-	-	-	-	2	3	3	3
CO4	3	3	3	3	2	2	2	-	-	-	-	3	3	3	2
Average	3	2.5	3	3	1.75	2	1.75	-	-	-	-	2.5	3	3	2.25
Course (Cont	ent:	1	1	L	1	1	I	1	1	<u> </u>	1	I	I	<u>I</u>
L (Hours	/Week	:)		T (E	Iours/	Week))	P (Hours	/Week))	Tota	Hour/	Week
				ì						,			-		

3		0	0	3		
Unit	Content & Competencies					
	Vapor compr Understand the refrigeration Analyze the ter refrigeration evaporation. Calculate the refrigeration Air refrigerate Explain the v (C2) Analyze the ter including cor Evaluate the Simple satura Describe the with a single Understand the simple satura Analyze the perfrigeration P-H charts (C Understand the refrigeration Interpret P-H different poir Multi-stage co Explain the co Understand the improving sy	& Competencies & Competencies ression refrigeration he basic principles a systems. (C2) hermodynamic proc cycles, including con (C3) coefficient of perfor cycles. (C3) ion cycles (C2, C3) vorking principles an hermodynamic proc npression, cooling, e performance and effa ated vapor compress simplified version o evaporator and conc he thermodynamic p ted vapor compressi simplified version o evaporator and conc he thermodynamic p ted vapor compressi performance and CO cycle. (C3) C2) he use of pressure-en- systems. (C2) charts to determine nts in the cycle. (C2) compression (C3) oncept of multi-stag he benefits and appli- stem efficiency. (C3)	cycles (C2, C3) nd components of vapor compression, condensation, or rmance (COP) for vapor conducted in air refriger and components of air refriger expansion, and heating. (C ficiency of air refrigeration ion refrigeration cycle (C2 f the vapor compression references and components denser. (C2) processes and components ion refrigeration cycle. (C2 DP of the simple saturated we inthalpy (P-H) charts in the the state and properties of the state and properties of the state and properties of the state and properties of the state and properties of the state and properties of the state an	ompression ompression expansion, and ompression geration systems. geration cycles, 3) cycles. (C3) c, C3) efrigeration cycle involved in the 2) vapor compression rmodynamics and refrigerants at tion systems. (C3) pression for		
	with multi-sta Multi-evapor	age compression. (C rator system (C3)	esses and performance of (3) ration of multi-evaporator			
	different cool	he advantages and ap ling requirements. (C	pplications of multi-evapor C3) sesses and performance of t			
	Cascade syste Explain the p Understand the	principle and operation	on of cascade refrigeration multiple refrigeration cycle	•		

	1
	Analyze the benefits and performance of cascade refrigeration systems for
	achieving ultra-low temperatures. (C3)
	Vapor absorption systems (C2, C3)
	Describe the working principles and components of vapor absorption
	refrigeration systems. (C2)
	Understand the thermodynamic processes involved in vapor absorption
	refrigeration cycles, including absorption, desorption, and refrigerant
	circulation. (C3)
	Analyze the performance, efficiency, and COP of vapor absorption refrigeration
	systems. (C3)
2	Refrigerant classification (C1)
	Understand the classification of refrigerants based on their chemical
	composition and characteristics. (C1)
	Differentiate between primary refrigerants, secondary refrigerants, and tertiary
	refrigerants. (C1)
	Explain the significance of refrigerant classification for system design,
	operation, and safety. (C1)
	Designation of refrigerants (C1)
	Explain the commonly used refrigerant designation systems, such as the
	ASHRAE numbering system. (C1)
	Understand the naming conventions and codes used to identify refrigerants,
	such as R-22, R-134a, and R-410A. (C1)
	Interpret refrigerant designations to determine properties, composition, and
	application suitability. (C1)
	Alternate refrigerants (C2, C3)
	Discuss the need for alternative refrigerants due to environmental concerns and regulations. (C2)
	Identify and evaluate alternative refrigerants, such as hydro fluorocarbons
	(HFCs), hydro chlorofluorocarbons (HCFCs), and natural refrigerants (e.g.,
	ammonia, carbon dioxide). (C2)
	Analyze the advantages, limitations, and safety considerations of using alternate
	refrigerants. (C3)
	Global warming and ozone-depleting aspects (C2, C3)
	Understand the environmental impact of refrigerants on global warming and
	ozone depletion. (C2)
	Discuss the role of refrigerants in contributing to greenhouse gas emissions and
	the depletion of the ozone layer. (C2)
	Analyze the regulations and initiatives aimed at reducing the use of ozone-
	depleting and high-global-warming-potential refrigerants. (C3)
	Refrigerant compressors - Reciprocating and Rotary (C2)
	Explain the working principles and characteristics of reciprocating compressors used in refrigeration systems (C_2)
	used in refrigeration systems. (C2)
	Describe the operation and advantages of rotary compressors in refrigeration
	applications. (C2)
	Analyze the performance and efficiency of reciprocating and rotary compressors
	in refrigeration systems. (C2)

	C = 1 (C2)
	Condensers (C2)
	Define condensers and their role in the refrigeration cycle. (C2)
	Describe different types of condensers used in refrigeration systems, such as air- cooled condensers and water-cooled condensers. (C2)
	Analyze the heat transfer and performance characteristics of condensers. (C2)
	Evaporators (C2)
	Explain the function and importance of evaporators in the refrigeration cycle.
	(C2)
	Describe different types of evaporators, including air-cooled evaporators and
	flooded evaporators. (C2)
	Analyze the heat transfer and performance characteristics of evaporators. (C2)
	Expansion devices (C2)
	Define expansion devices and their role in regulating the flow and pressure of
	refrigerants. (C2)
	Discuss different types of expansion devices, such as thermostatic expansion
	valves (TXVs) and electronic expansion valves. (C2)
	Analyze the impact of expansion devices on system efficiency. (C2)
	Cooling towers (C2)
	Explain the function and operation of cooling towers in refrigeration systems.
	(C2)
	Discuss the different types of cooling towers, including open and closed circuit
	cooling towers. (C2)
	Analyze the heat rejection process and performance of cooling towers. (C2)
3	Moist air properties (C2)
	Understand the properties of moist air, including temperature, humidity,
	pressure, specific volume, and enthalpy. (C2)
	Identify and define terms such as dry bulb temperature, wet bulb temperature,
	dew point temperature, relative humidity, and specific humidity. (C2)
	Calculate and analyze the properties of moist air using psychrometric equations
	and tables. (C2)
	Psychrometric chart (C2)
	Understand the construction and layout of a psychrometric chart. (C2)
	Interpret and use the psychrometric chart to analyze the properties and behavior of moist air. (C2)
	Locate and interpret points on the psychrometric chart to determine properties
	such as temperature, humidity ratio, enthalpy, and dew point. (C2)
	Different psychrometric process analysis (C3)
	Analyze different psychrometric processes, such as heating, cooling,
	humidification, dehumidification, and mixing of moist air. (C3)
	Determine the changes in properties of moist air during various processes on the
	psychrometric chart. (C3)
	Calculate and analyze the energy transfers, heat gains or losses, and changes in
	humidity during psychrometric processes. (C3)
	Psychrometric calculations (C3)
	Perform calculations involving psychrometric properties, such as sensible
	heating/cooling, latent heating/cooling, and adiabatic mixing of air streams.

	(C3)
	Apply psychrometric equations and formulas to determine the required air conditions for specific applications, such as air conditioning, ventilation, and drying processes. (C3)
	Interpret the results of psychrometric calculations and make informed decisions regarding system design and operation. (C3)
	Humidification and dehumidification processes (C3)
	Analyze the humidification and dehumidification processes in psychrometrics, including adiabatic mixing, direct evaporative cooling, and indirect evaporative cooling. (C3)
	Calculate the required amount of water, heat transfer, and changes in air
	properties during humidification and dehumidification processes. (C3)
	Understand the impact of humidification and dehumidification on air quality,
	comfort, and energy consumption. (C3)
4	Air conditioning systems - classification (C2)
	Understand the classification of air conditioning systems based on their
	application, such as residential, commercial, and industrial. (C2)
	Identify different types of air conditioning systems, including central air
	conditioning, split systems, packaged units, and variable refrigerant flow (VRF)
	systems. (C2)
	Discuss the features, advantages, and limitations of each type of air conditioning
	system. (C2)
	Cooling load calculations (C3) Perform appling load calculations to determine the amount of cooling required
	Perform cooling load calculations to determine the amount of cooling required for a space or building. (C3)
	Consider factors such as solar heat gain, internal heat sources, occupancy,
	ventilation requirements, and thermal properties of the building envelope. (C3)
	Use load calculation methods, such as the heat balance method or the cooling
	load temperature difference (CLTD) method, to estimate the cooling load. (C3) Different types of loads (C3)
	Identify and analyze different types of loads in air conditioning systems,
	including sensible heat load, latent heat load, ventilation load, and internal load. (C3)
	Calculate and allocate the cooling load based on the specific requirements of each load component. (C3)
	GRSHF (Global Refrigerant System Efficiency Factor) and ERSHF (Energy Efficiency Ratio of Sensible Heat Factor) (C3)
	Understand the concepts of GRSHF and ERSHF as measures of system
	efficiency in air conditioning. (C3)
	Calculate and analyze the GRSHF and ERSHF values based on the system's
	performance and energy consumption. (C3)
	Evaluate the impact of system design and equipment selection on GRSHF and
	ERSHF. (C3)
	Estimation of total load (C3)
	Estimate the total cooling load for a given space or building by considering the
	combined effect of all load components. (C3)

	ount for factors such as diversity, peak load conditions, and partial loads in
the e	stimation process. (C3)
Dete	rmine the appropriate cooling capacity and equipment sizing based on the
total	load estimation. (C3)
Air d	listribution patterns (C2)
Unde	erstand the importance of proper air distribution in achieving comfort and
effici	ient cooling. (C2)
Disc	uss different air distribution patterns, such as mixing ventilation,
displ	acement ventilation, and stratified air distribution. (C2)
Anal	yze the advantages and limitations of each air distribution pattern in
	rent applications. (C2)
	amic and frictional losses in air ducts (C3)
Unde	erstand the concept of dynamic losses and frictional losses in air duct
syste	ems. (C3)
Calc	ulate and analyze the pressure drop, velocity, and flow distribution in duct
syste	ems due to dynamic and frictional losses. (C3)
Selec	ct appropriate duct sizes and designs to minimize energy losses and
optin	nize air distribution. (C3)
Equa	al friction method (C3)
Expl	ain the equal friction method for duct sizing and system balancing. (C3)
Appl	y the equal friction method to determine the appropriate duct sizes for
diffe	rent sections of the air distribution system. (C3)
Acco	ount for factors such as air velocity, static pressure, and total pressure in the
equa	l friction method calculations. (C3)
-	characteristics of duct system (C3)
	erstand the interaction between fans and the air duct system in terms of
	sure, airflow, and system performance. (C3)
Anal	yze the fan characteristics, such as fan curves, fan laws, and fan efficiency.
(C3)	
	ct fans based on the required airflow, static pressure, and noise
	iderations in the duct system. (C3)
	Strategies and Contact Hours

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
Lecture	25
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5

Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment		CO1	CO2	CO3	CO4
Quiz					
VIVA					
Assignment / Presentation		✓	 ✓ 	✓	 ✓
Unit test					
Practical Log Book/ Record Book					
Mid Semester Examination 1		✓	✓	✓	 ✓
Mid Semester Examination 2		✓	 ✓ 	✓	✓
University Examination		✓	✓	✓	 ✓
Feedback Process	1. Student's H	Feedback			
	2. Course Ext	it Survey			
Students Feedback is taken through various	steps				

- dents Feedback is taken through various stepsRegular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:	(List of reference books)
	 Arora, C. P., (2008), Refrigeration and Air Conditioning, Tata McGraw- Hill Publishing Company Ltd. ISBN: 978-0-070-08390-5. Manohar Prasad, (2003), Refrigeration and Air conditioning, New Age International. W. F. Stocker and J. W. Jones, (2002), Refrigeration and Air conditioning, McGraw Hill. ISBN: 978

]	Facu	lty o	f En	gine	ering	g and	Tecl	hnolo	ду			
Name of the Department					N	Mechanical Engineering									
Name of the Program					E	B. Tec	h.								
Course Co	ode														
Course Ti	tle					A	uton	nobil	e Eng	gineer	ing				
Academic	Year	•				Ι	[
Semester						Ι	Π								
Number o	of Cre	dits				3									
Course Pr	ereq	uisite	•			N	JA								
Course Sy	nops	is				v ei aj m	ehicle lectric pplied notorc	e engi al, el l to ycle,	neerir ectror the	ng, ind nics, s design obile,	corpora oftwar n, ma	ating el e and s nufactu	in depthements safety end are and nks and t	of mech gineerin operati	nanical, ng it is ion of
Course O	utcon	nes:					0								
At the end	of the	e cou	rse, s	tuden	ts wil	ll be a	able t	0:							
CO1	Acc	luire f	undar	nental	l knov	vledge	dge of the various types of vehicles.								
CO2	Unc	lersta	nd the	trans	missio	on sys	system of an Automobile.								
CO3	Unc	lersta	nd and	l anal	yze th	e diff	erent	types	of Sus	spensi	on syst	ems use	ed in Aut	omobile	
CO4	Ana	alyze	and e	evalua	ate br	ake p	erfor	manc	e.						
Mapping Outcomes		urse	Outc	omes	s (CO	s) to	Prog	gram	Outc	omes	(POs)& Pro	ogram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	2	2	1	-	-	-	-	1	1	2	2	3	1
CO2	3	2	3	2	1	1	-	-	1	1	-	3	1	3	3
CO3	3	3	3	3	2	2	-	-	1	-	1	2	-	3	3
CO4	3	2	3	3	2	1	-	-	-	-	-	2	-	3	2
Average	3	2.25	2.75	2.5	1.5	1	-	-	0.5	0.5	0.5	2.25	0.75	3	2.25
Course (Cont	ent:	1	I	1	I	1	I	1	1	1		1	<u>I</u>	<u>I</u>
L (Hours	/Week	x)		T (E	Iours/	Week)	P (Hours/Week)				Total Hour/Week		
	3				0			0				3			

Unit	Content & Competencies
1	Classification of vehicles (C1)
	Understand the classification of vehicles based on their intended use, such as
	passenger cars, commercial trucks, motorcycles, and off-road vehicles. (C1)
	Identify and differentiate between different vehicle types, including sedans,
	SUVs, hatchbacks, pickup trucks, and motorcycles. (C1)
	Discuss the features, size, capacity, and typical applications of each vehicle
	classification. (C1)
	Drives and general layout (C1)
	Understand the different types of vehicle drives, including front-wheel drive, rear-wheel drive, all-wheel drive, and four-wheel drive. (C1)
	Explain the general layout of a vehicle, including the engine placement (front,
	rear, or mid), transmission location, and wheel arrangement. (C1)
	Discuss the advantages, disadvantages, and performance characteristics of different drive systems and layouts. (C1)
	Engine - Diesel and Petrol engines for automobiles (C2)
	Describe the construction, working principle, and combustion process of diesel and petrol engines used in automobiles. (C2)
	Differentiate between diesel and petrol engines in terms of fuel injection,
	ignition system, compression ratio, and operating characteristics. (C2)
	Discuss the advantages and disadvantages of diesel and petrol engines in terms
	of efficiency, power output, emissions, and cost. (C2)
	Two-stroke and four-stroke engines (C2)
	Explain the differences between two-stroke and four-stroke engines in terms of their operating cycles and valve configurations. (C2)
	Discuss the advantages and disadvantages of two-stroke and four-stroke engines
	in terms of power output, fuel efficiency, emissions, and maintenance requirements. (C2)
	Compare the performance characteristics of two-stroke and four-stroke engines
	in terms of power delivery, torque, and RPM range. (C2)
	Comparison of performance (C3)
	Analyze and compare the performance of diesel and petrol engines based on
	factors such as power output, torque, specific fuel consumption, and emissions. (C3)
	Evaluate the performance characteristics of two-stroke and four-stroke engines
	in terms of power density, efficiency, and durability. (C3)
	Consider the application-specific requirements and intended use when
	comparing the performance of different engine types. (C3)
	Factors affecting choice (C3)
	Identify and discuss the factors that affect the choice of engine type in
	automobiles, such as fuel availability, cost, emissions regulations, performance
	requirements, and vehicle application. (C3)
	Analyze the trade-offs and considerations in selecting between diesel and petrol
	engines or two-stroke and four-stroke engines based on the specific
	requirements and constraints. (C3)
	Power requirements of an automobile (C3)

	Understand the power requirements of an automobile in terms of the energy needed to overcome various resistances and perform desired tasks. (C3) Discuss the factors affecting the power requirement, including vehicle weight, aerodynamic drag, rolling resistance, grade (gradient), and desired performance characteristics. (C3) Calculate and analyze the power requirements based on the vehicle parameters and operating conditions. (C3) Factors affecting resistance and power requirement (C3) Identify and analyze the factors that contribute to the resistance faced by an automobile, such as rolling resistance, air resistance (wind drag), and grade resistance (uphill or downhill). (C3) Discuss the influence of vehicle design, weight, aerodynamics, tire characteristics, road conditions, and driving behavior on resistance and power requirements. (C3)
	Understand the relationship between resistance, power requirement, vehicle speed, and fuel consumption. (C3)
2	Power transmission system (C2) Understand the concept and components of a power transmission system in a vehicle. (C2) Identify the main components involved in transmitting power from the engine to the wheels. (C2) Discuss the importance of an efficient power transmission system for vehicle performance and drivability. (C2) Requirement of transmission system (C2) Identify and explain the requirements of a transmission system in a vehicle, such as torque multiplication, speed variation, smooth power delivery, and gear selection. (C2) Discuss the role of the transmission system in adapting engine power to different driving conditions and optimizing vehicle performance. (C2) Clutches (C2) Understand the purpose and function of clutches in a power transmission system. (C2) Discuss the different types of clutches used in vehicles, including plate clutches, semi-automatic clutches, and automatic clutches. (C2) Explain the operation and advantages of each type of clutch. (C2) Gearbox: manual shift four-speed and positive speed gearboxes (C3) Describe the construction and operation of manual shift four-speed gearboxes. (C3) Understand the concept of gear ratios and their impact on vehicle speed and torque. (C3) Discuss the advantages and limitations of manual shift four-speed gearboxes. (C3) Synchromesh devices (C3)
	Explain the purpose and function of synchromesh devices in manual transmissions. (C3)

3 Understand how synchromesh devices facilitate smooth and synchronizes shifting. (C3) Discuss the operation and benefits of synchromesh devices in improving drivability and reducing gear grinding. (C3) Fluid transmission: fluid flywheel and torque converter-automatic transmission. (C2) Describe the operation and components of fluid flywheel and torque con automatic transmissions. (C2) Understand the advantages and disadvantages of fluid transmission syste compared to manual transmission and torque multiplication. (C2) Discuss the operation and benefits of fluid flywheels and torque convert providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting porfrom the transmission to the wheels. (C2) Explain the operation and components of differentials, including conventional and non-slip types (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axles, including solid axles and independ suspension axles. (C2) Discuss different types of drive axle design on vehicle performance and ham (C2) Discuss different types of drive axle design on vehicle performance and ham (C2) Understand the requirements of a suspension system in a vehicle, such a	
 Discuss the operation and benefits of synchromesh devices in improving drivability and reducing gear grinding. (C3) Fluid transmission: fluid flywheel and torque converter-automatic transm (C2) Describe the operation and components of fluid flywheel and torque con automatic transmissions. (C2) Understand the advantages and disadvantages of fluid transmission syste compared to manual transmission for fluid flywheels and torque converter providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting porfrom the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axle, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and har (C2) Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension system for ensuring passenger comfort and vehicle safety. (C2) Discuss the advantages and disadvantages of each type of suspension system removinding comfort, stability, and bandling. (C2) Ex	nized gear
 drivability and reducing gear grinding. (C3) Fluid transmission: fluid flywheel and torque converter-automatic transmission: (C2) Describe the operation and components of fluid flywheel and torque con automatic transmissions. (C2) Understand the advantages and disadvantages of fluid transmission syste compared to manual transmissions. (C2) Discuss the operation and benefits of fluid flywheels and torque convert providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting porfrom the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip types (C2) Drive atle (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and har (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle de (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system row of ride quality, handling, and cost. (C2) Discuss the advantages and disadvantages of each type of suspension s	
 Fluid transmission: fluid flywheel and torque converter-automatic transm (C2) Describe the operation and components of fluid flywheel and torque con automatic transmissions. (C2) Understand the advantages and disadvantages of fluid transmission syste compared to manual transmissions. (C2) Discuss the operation and benefits of fluid flywheels and torque convert providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting porfrom the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle, including solid axles and independ suspension axles. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and har (C2) Identify the main functions of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle drive (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system roms of ride quality, handling, and cost. (C2) Dis	ing
 (C2) Describe the operation and components of fluid flywheel and torque con automatic transmissions. (C2) Understand the advantages and disadvantages of fluid transmission syste compared to manual transmission and torque multiplication. (C2) Discuss the operation and benefits of fluid flywheels and torque convert providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting por from the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Drive axle (C2) Explain the operation and components of the drive axle in a vehicle. (C2) Understand the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axles, including solid axles and independ suspension axles. (C2) Discuss different types of drive axle design on vehicle performance and har (C2) Analyze the impact of drive axle design on vehicle performance and har (C2) Identify the main functions of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle drive axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system for ensuri passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system rems of ride quality, handling, and cost. (C2) Understand the impact of suspension system de	
 Describe the operation and components of fluid flywheel and torque con automatic transmissions. (C2) Understand the advantages and disadvantages of fluid transmission syste compared to manual transmissions. (C2) Discuss the operation and benefits of fluid flywheels and torque convert providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting por from the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Identify the main functions of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the differences between rigid axle and independent suspension system for ensurin passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system for ensurin passenger comfort and vehicle safety. (C2) Discuss the advantages and disadvantages of each type of suspension systems of ride qualit	Insmission
 automatic transmissions. (C2) Understand the advantages and disadvantages of fluid transmission syste compared to manual transmissions. (C2) Discuss the operation and benefits of fluid flywheels and torque convert providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting porfrom the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Understand the requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle d (C2) Discuss the importance of a well-designed suspension system for ensuri passenger comfort and vehicle safety. (C2) Explain the differences between rigid axle and independent suspension system for ensuri passenger comfort and vehicle safety. (C2) Discuss the advantages and disadvantages of each type of suspension system for ensuri passenger comfort and vehicle safety. (C2) Discuss the advantages and disadvantages of each t	
 Understand the advantages and disadvantages of fluid transmission syste compared to manual transmissions. (C2) Discuss the operation and benefits of fluid flywheels and torque convert providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting porfrom the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dr (C2) Discuss the importance of a well-designed suspension system for ensurin passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension systems or ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performat comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2)	converter-
 compared to manual transmissions. (C2) Discuss the operation and benefits of fluid flywheels and torque converted providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting porfrom the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle, including solid axles and independs suspension axles. (C2) Discuss different types of drive axles, including solid axles and independs suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and har (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension s (C2) Discuss the advantages and disadvantages of each type of suspension systems of ide quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performan comfort. (C2) 	
Discuss the operation and benefits of fluid flywheels and torque converts providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting porfrom the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and ham (C2) 3 3 3 3 3 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ystems
 providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting por from the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle d (C2) Discuss the importance of a well-designed suspension system for ensurin passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension sy terms of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performan comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	
 providing smooth power transmission and torque multiplication. (C2) Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting por from the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle d (C2) Discuss the importance of a well-designed suspension system for ensurin passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension sy terms of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performan comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	verters in
 Drive line - differential, conventional, and non-slip types (C2) Understand the purpose and function of the drive line in transmitting por from the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Understand the requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle de (C2) Discuss the importance of a well-designed suspension system for ensurin passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension sy terms of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performanc comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	
 Understand the purpose and function of the drive line in transmitting porfrom the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dr (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system for ensuring passenger comfort and vehicle safety. (C2) Discuss the advantages and disadvantages of each type of suspension system for item acomfort. (C2) Understand the impact of suspension system design on vehicle performance or fort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	, ,
 from the transmission to the wheels. (C2) Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dr (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system for ensuring passenger comfort and vehicle safety. (C2) Discuss the advantages and disadvantages of each type of suspension system for ensuring assenger of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performance order. (C2) 	nower
 Explain the operation and components of different types of differentials, including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system confort. (C2) Discuss the advantages and disadvantages of each type of suspension system confort. (C2) Understand the impact of suspension system design on vehicle performance order. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	power
 including conventional and non-slip differentials. (C2) Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle d (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system for ensuring passenger or fide quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performance and comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	ale
 Discuss the role of differentials in distributing power between the wheel improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Understand the requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle d (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system for ensuring passenger or fort and vehicle safety. (C2) Discuss the advantages and disadvantages of each type of suspension systems or fide quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performance or fort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	ais,
 improving vehicle stability and traction. (C2) Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) 3 Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dr (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system for ensuring assenger comfort and cost. (C2) Discuss the advantages and disadvantages of each type of suspension system for duality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performat comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	1
 Drive axle (C2) Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) 3 Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensurin passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performance of a comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	leels and
 Explain the function and components of the drive axle in a vehicle. (C2) Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensurin passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension sy terms of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performa comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	
 Understand the role of the drive axle in transmitting power from the diff to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and ham (C2) 3 Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system for ensuring or fide quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performation for the differences of suspension system design on vehicle performation for the differences of the distribution of the avelage of each type of suspension system comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	
 to the wheels. (C2) Discuss different types of drive axles, including solid axles and independ suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and ham (C2) 3 Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performation comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	
Discuss different types of drive axles, including solid axles and independ suspension axles. (C2)Analyze the impact of drive axle design on vehicle performance and han (C2)Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2)Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system for each type of suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performance comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air suspen (C2)	differential
suspension axles. (C2) Analyze the impact of drive axle design on vehicle performance and han (C2) 3 Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performance comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2)	
Analyze the impact of drive axle design on vehicle performance and han (C2)3Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension sy (C2) Discuss the advantages and disadvantages of each type of suspension sy terms of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performance comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air suspension (C2)	bendent
(C2)33 <t< th=""><th></th></t<>	
 3 Suspension system - requirements (C2) Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension system for ensuring of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performation comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air suspension (C2) 	handling.
 Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension s (C2) Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performat comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	-
 Understand the requirements of a suspension system in a vehicle, such a providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension s (C2) Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performat comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	
 providing comfort, stability, and handling. (C2) Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension s (C2) Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performation comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2) 	h as
Identify the main functions of a suspension system, including absorbing shocks, maintaining tire contact with the road, and controlling vehicle dy (C2)Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2)Rigid axle and independent suspension (C2)Explain the differences between rigid axle and independent suspension s (C2)Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2)Understand the impact of suspension system design on vehicle performation comfort. (C2)Types of suspension - leaf spring, coil spring, torsion rod, and air suspen (C2)	
 shocks, maintaining tire contact with the road, and controlling vehicle dy (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension set (C2) Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performation comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air suspension (C2) 	ing road
 (C2) Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension set (C2) Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performation comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air suspension (C2) 	
 Discuss the importance of a well-designed suspension system for ensuring passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension set (C2) Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performation comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air suspension (C2) 	
 passenger comfort and vehicle safety. (C2) Rigid axle and independent suspension (C2) Explain the differences between rigid axle and independent suspension sectors (C2) Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performation comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air suspension (C2) 	uring
Rigid axle and independent suspension (C2)Explain the differences between rigid axle and independent suspension so(C2)Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2)Understand the impact of suspension system design on vehicle performation comfort. (C2)Types of suspension - leaf spring, coil spring, torsion rod, and air suspension (C2)	uning
 Explain the differences between rigid axle and independent suspension s (C2) Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performation comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air suspent (C2) 	
 (C2) Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performation comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air suspen (C2) 	n avatana
Discuss the advantages and disadvantages of each type of suspension systems of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performation comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air suspent (C2)	on systems.
terms of ride quality, handling, and cost. (C2) Understand the impact of suspension system design on vehicle performa comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air suspen (C2)	<i>,</i> .
Understand the impact of suspension system design on vehicle performation comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2)	system in
comfort. (C2) Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2)	
Types of suspension - leaf spring, coil spring, torsion rod, and air susper (C2)	mance and
(C2)	
	pension
Describe unrerent types of suspension systems used in vehicles, including	uding leaf
spring, coil spring, torsion rod, and air suspension. (C2)	C
	pension

	Explain the working principles and characteristics of each type of suspension system. (C2)
	Discuss the applications and benefits of different suspension types based on
	vehicle requirements and load capacities. (C2)
	Shock absorbers (C2)
	Understand the role of shock absorbers in a suspension system. (C2)
	Explain how shock absorbers work to dampen the oscillations and vibrations of
	the suspension system. (C2)
	Discuss the importance of properly functioning shock absorbers for maintaining vehicle stability and control. (C2)
	Front axle - types, front wheel geometry, conditions for true rolling (C2)
	Identify different types of front axles used in vehicles, such as solid axles and
	independent suspension axles. (C2)
	Understand the importance of front wheel geometry in achieving true rolling and proper steering characteristics. (C2)
	Discuss the conditions required for true rolling, including camber, caster, and toe angles. (C2)
	Steering geometry - Ackermann and Davis steering, steering linkages (C2)
	Explain the principles of Ackermann and Davis steering geometries. (C2)
	Understand the purpose and function of steering linkages in transmitting
	steering inputs to the front wheels. (C2)
	Discuss the advantages and limitations of different steering geometries and linkages. (C2)
	Steering gear box - power and power-assisted steering (C2)
	Describe the operation and components of steering gearboxes in vehicles. (C2) Understand the difference between manual steering and power-assisted steering
	systems. (C2)
	Discuss the benefits and operation of power steering systems in reducing driver effort and improving maneuverability. (C2)
	Wheel alignment - Tyres: materials and types, static and rolling properties of pneumatic tyres (C2)
	Explain the importance of proper wheel alignment for vehicle stability and tire wear. (C2)
	Describe the materials and construction of pneumatic tires used in vehicles. (C2)
	Discuss the static and rolling properties of tires, including tire pressure; tread
	design, and traction characteristics. (C2)
	Understand the impact of tire properties on vehicle handling, braking, and fuel
	efficiency. (C2)
4	Braking system - hydraulic braking systems (C2)
	Understand the principles and components of hydraulic braking systems in
	vehicles. (C2) Explain the operation of hydraulic brake systems, including the master cylinder
	Explain the operation of hydraulic brake systems, including the master cylinder, brake lines, wheel cylinders, and brake calipers. (C2)
	Discuss the advantages of hydraulic brakes over mechanical braking systems.
	(C2)
	Drum type and disc type brakes (C2)
L	

Differentiate between drum-type and disc-type brakes. (C2)
Describe the construction and operation of drum brakes and disc brakes. (C2)
Compare the performance characteristics and advantages of drum and disc
brakes. (C2)
Power and power-assisted brakes (C2)
Understand the concept of power brakes and their role in increasing braking
force. (C2)
Explain the operation of power-assisted brakes, such as vacuum-assisted and
hydraulic-assisted brakes. (C2)
Discuss the benefits of power-assisted brakes in reducing driver effort and
improving braking performance. (C2)
Factors affecting brake performance (C2)
Identify the factors that can affect brake performance, such as friction materials,
brake pad wear, brake fluid quality, and temperature. (C2)
Discuss how environmental conditions and driving style can influence brake
performance. (C2)
Tests on brakes - skid and skid prevention (C2)
Explain the importance of brake testing and evaluation for ensuring proper
brake performance. (C2)
Discuss different brake tests, including brake fade, brake balance, and brake
efficiency tests. (C2)
Understand the concept of skidding and the methods used for skid prevention,
such as anti-lock braking systems (ABS) and electronic stability control (ESC).
(C2)
Chassis - types of bodies (C1)
Identify different types of vehicle bodies, such as sedan, hatchback, SUV,
pickup truck, and van. (C1)
Understand the characteristics and purposes of different body types in relation to
passenger accommodation and cargo carrying capacity. (C1)
Chassis frame - integral body (C1)
Explain the concept of a chassis frame and its role in providing structural
support and rigidity to the vehicle. (C1)
Discuss the advantages and disadvantages of chassis frames in terms of weight,
cost, and versatility. (C1)
Understand the concept of an integral body where the body and chassis are
combined into a single unit. (C1)
Vehicle stability (C2)
Understand the concept of vehicle stability and its importance for safe and
predictable handling. (C2)
Discuss the factors that influence vehicle stability, such as weight distribution,
center of gravity, suspension design, and tire characteristics. (C2)
Explain how design features, such as anti-roll bars and electronic stability
control (ESC), contribute to improving vehicle stability. (C2)

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
Lecture	30
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz				

VIVA									
Assignment / Prese	signment / Presentation					✓	✓		
Unit test									
Practical Log Book	k/ Record]	Book							
Mid Semester Exam	mination 1			✓	✓	✓	✓		
Mid Semester Exam	mination 2	,		✓	✓	✓	✓		
University Examin	ation			✓	✓	✓	✓		
Feedback Process			1. Student's	Feedback					
			2. Course Ex	Exit Survey					
2. Feedback b	edback thro between the	ough the Mento	r Mentee system igh google forr	ns.					
References:		eference books							
	i) Dr. Kirpal Singh, Automobile Engg. Vol1, Standard Publishers								
	ii) Crouse & Angline Automotive Mechanics Tata McGraw Hilliii) R.B. Gupta Automobile Engineering SatyaPrakashan						Hill		

Faculty	of Engineering and Technology
Name of the Department	Mechanical Engineering
Name of the Program	B. Tech.
Course Code	
Course Title	Numerical Methods
Academic Year	II
Semester	III
Number of Credits	3
Course Prerequisite	Engineering Mathematics I & II
Course Synopsis	The technological advancements have significantly increased the range of engineering problems that needs to be solved reliably. Numerical Methods use computers to solve problems by step-wise, repeated and iterative solution methods, which would otherwise be tedious or unsolvable by hand- calculations. This course is designed to give an overview of numerical methods of interest to students. However, the focus being on the techniques themselves, rather than specific applications, the contents are relevant to varied fields such as engineering, management, economics, etc.

Course Outcomes:

At the end of the course, students will be able to:

CO1	Apply various numerical methods and appreciate a trade off in using them.
CO2	Understand the source of various types of errors and their effect in using these methods.
CO3	To distinguish between Numerical and Analytical methods along with their Merits and demerits.
CO4	Understand the use of digital computers in implementation of these methods.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes:

COs	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	1	2	1	2	-	-	-	-	2	3	3	2	-
CO2	3	3	2	3	2	1	-	-	-	-	-	2	-	-	2
CO3	3	2	2	2	2	2	-	-	-	-	-	3	-	-	-
CO4	3	2	2	2	3	1	-	-	-	-	2	3	-	3	-
Average	3	2.25	1.75	2.25	2	1.5	-	-	-	-	2	2.75	0.75	1.25	0.5

<u> </u>				
Course Con		T (Hours/Week)	P (Hours/Week)	Total Hour/Week
	3	0	0	3
Unit	Content	& Competencies		
2	 Provide an or (C1) Explain the or calculations. Discuss the sea and round-or Introduce the calculations. Explain the provide and round-or Introduce the calculations. Explain the provide and round-or Introduce the calculations. Explain the provide and round-or Introduce the solving simulations. Discuss mathematication of the calculation of the calculation of the calculation of the calculation. Explain Cranting Solving simulations. Introduce LU systems. (C2) Iterative Mericative Mericative Mericative Introduce iterative in Explain relative specific iteration. Eigen Value Introduce eigen value Introduce Introduce	concepts of accuracy a (C1) sources of errors in nu ff errors. (C1) e binary number syster (C1) propagation of errors a olutions. (C1) ms and Equations (C2 matrix representation of auss elimination as a n C2) rix inversion and its appli- auss elimination as a n C2) rix inversion and its in C2) J decomposition as an exation methods as an a approving an initial gue xation methods, such a tive techniques for so convergence criteria an application of iterative (C3) s (C3) gen values as a fundam significance of eigen v bods for computing eign n. (C3)	ems and their signification and precision in the com- merical computations, m and its relevance in co- and how they can affect (2) of linear systems and the (2) of linear systems and the (3) mean of the solving linear of the solving linear solving linear solving linear systems. (Ca) as the Jacobi and Gauss linear systems. (Can d limitations of iteration of the solving linear values in understanding gen values, such as the values in various fields (3)	text of numerical including truncation computer-based t the accuracy of heir advantages in systems. (C2) ar systems through row hear systems solving linear hear systems by s-Seidel methods, as (C3) we methods. (C3) mples and numerical the behavior of linear power method and the

Introduction to Algebraic Equations (C2)
Introduce the concept of algebraic equations and their importance in various
scientific and engineering applications. (C2)
Explain the different types of algebraic equations, such as linear, quadratic, and polynomial equations. (C2)
Discuss the significance of solving algebraic equations in obtaining numerical
solutions and understanding the behavior of systems. (C2)
Bracketing methods: Bisection, Regula-Falsi (C3)
Introduce bracketing methods as numerical techniques for finding roots of algebraic equations. (C3)
Explain the bisection method and its principles for narrowing down the root
interval. (C3)
Discuss the Regula-Falsi method (also known as false position method) and its
advantages in achieving faster convergence. (C3)
Illustrate the implementation of bracketing methods through examples and
numerical simulations. (C3)
Open Methods: Secant, Fixed point iteration, Newton-Raphson (C3)
Introduce open methods as numerical techniques for finding roots of algebraic
equations without the need for a bracketed interval. (C3)
Explain the principles of the Secant method, including the use of secant lines to
approximate the root. (C3)
Discuss the fixed point iteration method and its application in solving equations
by finding a fixed point of a function. (C3)
Introduce the Newton-Raphson method and its advantages in achieving fast
convergence through the use of derivatives. (C3)
Illustrate the implementation of open methods through examples and numerical
simulations. (C3)
Multivariate Newton's method (C4)
Introduce the multivariate Newton's method as an extension of the Newton- Raphson method to systems of equations. (C4)
Discuss the principles of the multivariate Newton's method and the calculation
of Jacobian matrices. (C4)
Explain the advantages and limitations of the multivariate Newton's method in
solving systems of equations. (C4)
Illustrate the application of the multivariate Newton's method through examples and numerical simulations. (C4)
Numerical differentiation; error analysis; higher-order formulae (C3)
Introduce numerical differentiation as a technique for approximating derivatives
of functions. (C3)
Discuss the different methods for numerical differentiation, such as forward
difference, backward difference, and central difference. (C3)
Explain the error analysis associated with numerical differentiation and the
concept of truncation error. (C3)
Introduce higher-order formulae for numerical differentiation, such as
Richardson extrapolation and higher-order central difference formulas. (C3)
Illustrate the implementation of numerical differentiation techniques and the use

	of higher-order formulae through examples and numerical simulations. (C3)
3	Integral methods, Interpolation, and curve fitting (C3)
	Integration and Integral Equations (C3)
	Introduce integration as a numerical technique for approximating definite
	integrals. (C3)
	Explain the trapezoidal rule and Simpson's rule as methods for numerical
	integration. (C3)
	Discuss the principles of quadrature methods for more accurate integration, such
	as Gaussian quadrature. (C3)
	Illustrate the implementation of integration techniques through examples and numerical simulations. (C3)
	Linear regression, Least squares, Total Least Squares (C4)
	Introduce linear regression as a statistical method for fitting a linear relationship
	between variables. (C4)
	Explain the least squares method for estimating the coefficients in a linear
	regression model. (C4)
	Discuss the principles of total least squares, which considers errors in both the
	dependent and independent variables. (C4)
	Illustrate the application of linear regression, least squares, and total least
	squares through examples and numerical analysis. (C4)
	Interpolation and Curve Fitting (C3)
	Introduce interpolation as a method for approximating values within a given set
	of data points. (C3)
	Explain Newton's difference formulae for polynomial interpolation, including
	forward, backward, and central differences. (C3)
	Discuss cubic splines as a technique for curve fitting, which provides a smooth
	and continuous representation of data. (C3)
	Illustrate the application of interpolation and curve fitting techniques through
	examples and numerical simulations. (C3)
4	ODEs: Initial Value Problems (C3)
	Introduction to ODE-IVP (C3)
	Introduce ordinary differential equations (ODEs) and their significance in
	modeling dynamic systems. (C3)
	Explain initial value problems (IVPs) as a specific type of ODEs with initial conditions. (C3)
	Discuss the importance of solving IVPs in understanding the behavior and
	evolution of systems. (C3)
	Euler's methods (C3)
	Explain Euler's methods as simple numerical techniques for solving first-order
	ODE-IVPs. (C3)
	Discuss the principles of the forward Euler method and the backward Euler
	method. (C3)
	Illustrate the implementation of Euler's methods through examples and
	numerical simulations. (C3)
	Runge-Kutta methods (C4)
	Introduce Runge-Kutta methods as more accurate and versatile numerical

f_{1}
techniques for solving ODE-IVPs. (C4)
Discuss the principles of the classical fourth-order Runge-Kutta method. (C4)
Explain the concept of higher-order Runge-Kutta methods and their benefits in
terms of accuracy and stability. (C4)
Illustrate the implementation of Runge-Kutta methods through examples and
numerical simulations. (C4)
Predictor-corrector methods (C4)
Introduce predictor-corrector methods as a combination of explicit and implicit
methods for solving ODE-IVPs. (C4)
Discuss the principles of predictor-corrector methods, such as the Adams-
Bashforth-Moulton method. (C4)
Explain the advantages of predictor-corrector methods in terms of accuracy and
stability. (C4)
Illustrate the implementation of predictor-corrector methods through examples
and numerical simulations. (C4)
Extension to multi-variable systems (C4)
Discuss the extension of numerical methods to handle systems of ODEs,
involving multiple variables. (C4)
Explain the principles of solving multi-variable ODE-IVPs using matrix
equations and vector-based techniques. (C4)
Illustrate the implementation of numerical methods for multi-variable systems
through examples and numerical simulations. (C4)
Adaptive step size (C4)
Discuss the concept of adaptive step size in numerical ODE solving, where the
step size is adjusted dynamically based on error estimates. (C4)
Explain the principles of adaptive step size algorithms, such as the Runge-
Kutta-Fehlberg method (RK45). (C4)
Illustrate the benefits of adaptive step size in terms of efficiency and accuracy
through examples and numerical simulations. (C4)
Stiff ODEs (C4)
Introduce stiff ODEs as a special class of ODEs where the dynamics vary
significantly over different time scales. (C4)
Discuss the challenges associated with solving stiff ODEs and the importance of
specialized numerical methods. (C4)
Introduce stiff ODE solvers, such as the implicit methods and
Rosenbrockmethods, that are specifically designed for stiff ODEs. (C4)
Illustrate the application of stiff ODE solvers through examples and numerical
simulations. (C4)
Boundary Value Problems (C3)
Shooting method (C3)
Introduce boundary value problems (BVPs) as a type of ODEs with boundary
conditions. (C3)
Explain the shooting method as a numerical technique for solving BVPs by transforming them into $WPs_{(C2)}$
transforming them into IVPs. (C3)
Discuss the principles of the shooting method, including the selection of initial (G^2)
guesses and the use of root-finding algorithms. (C3)

Illustrate the implementation of the shooting method through examples and
numerical simulations. (C3)
Finite differences (C3)
Introduce finite difference methods as numerical techniques for approximating
derivatives in ODEs. (C3)
Discuss the principles of finite difference methods for solving BVPs by
discretizing the domain and approximating derivatives. (C3)
Explain the different types of finite difference schemes, such as central
differences and forward/backward differences. (C3)
Illustrate the implementation of finite difference methods for solving BVPs
through examples and numerical simulations. (C3)
Over/Under Relaxation (SOR) (C3)
Introduce the over relaxation and under relaxation methods as iterative
techniques for solving BVPs. (C3)
Discuss the principles of the successive over relaxation (SOR) method,
including the relaxation parameter and convergence criteria. (C3)
Illustrate the implementation of the SOR method for solving BVPs through
examples and numerical simulations. (C3)

Teaching - Learning Strategies	Contact Hours
Lecture	25
Practical	
Seminar/Journal Club	
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	10
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	

Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)

Nature of Assessm	nent		CO1	CO2	CO3	CO4	
Quiz							
VIVA							
Assignment / Prese	entation		✓	✓	✓	✓	
Unit test						-	
Practical Log Bool	x/ Record Book						
Mid Semester Exa	mination 1		✓	✓	✓	✓	
Mid Semester Exa	mination 2		✓	✓	✓	✓	
University Examin	ation		~	✓	✓	✓	
			I	_		1	
Feedback Process	5	1. Student's Fee	dback				
		2. Course Exit S	xit Survey				
Students Feedback	is taken through various	steps					
	edback through Mentor Me	_					
2. Feedback b	etween the semester throu	igh google forms.					
3. Course Exit Survey will be taken at the end of semester.							
References:	(List of reference books)						
	 i) Mahinder Kumar Jain, S R K Iyengar, R K Jain, "Numerical Methods: Problems And Solutions", January 2020, New Age International Private Limited, ISBN-13 :978-9388818926 ii) Richard W. Hamming, "Numerical Methods for Scientists and Engineers", Dover Publications Inc, New edition, ISBN-13 : 978-0486652412 						

			ł	Facul	ty of	fEng	ginee	ring	and 7	Fechr	olog	у			
Name of t	he De	epart	ment			Ν	Iecha	nical	Engin	eering	ç.				
Name of t	he Pr	ogra	m			B	. Tec	h.							
Course Co	ode														
Course Ti	itle					P	roduc	t Des	ign fo	r Man	ufactu	uring			
Academic	Year	•				I	[
Semester						Π	Ι								
Number o	of Cre	dits				3									
Course Pr	rerequ	uisite	:			N	il								
Course Sy	nops	is				an m du si gu du m co an st st st	Product Design for Manufacturing is the general engineering art of designing products in such a way that they are easy to manufacture. This design practice not only focuses on the design aspect of a part but also on the product ability. In simple language it means relative ease to manufacture a product, part or assembly. DFM describes the process of designing or engineering a product in order to facilitate the manufacturing process in order to reduce its manufacturing costs. This course will impart knowledge of various methods and approaches used in design of manufacturing. Moreover, students will get familiar to DFMA software through case studies. In the end of course, student will be able to utilize the knowledge gained through coursework for the development of new product.						easy to on the ility. In cture a cess of tate the acturing methods preover, gh case ilize the		
Course O	utcon	nes:													
At the end															
CO1		-						-		•			bach to p method		-
CO2			-		-							-		-	
	CO2 Possess methods and approaches for principles and evaluation methods of various aspects of designing components														
CO3	CO3 Develop a manufacturability of new product as per the requirement.														
CO4 Demonstrate the knowledge of DFMA software for case studies															
Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes:															
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			

9	10	11	12		

CO1	3	2	1	2	2	1	1	1	2	2	3	3	3	2	2
CO2	3	2	2	3	1	1	1	1	1	1	2	2	3	2	1
CO3	3	1	2	2	2	2	2	1	2	1	2	2	3	1	2
CO4	3	2	1	1	2	1	1	2	3	2	3	3	3	2	1
Average	3	1.75	1.5	2	1.75	1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5

Course Content:

L (Hour	s/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week
3	3		0	3
Unit	Content	& Competencies	L	
1	Provide an ov various indus Explain the k development Discuss the r solutions to r Asimow's Me Introduce As the functiona Explain the s constraints in Illustrate the from real-wo Product Desi Explore the p design. (C3) Discuss the in designing suc Highlight the designs. (C3) Provide insig design, engin Strength Con Explain the in in ensuring th Discuss the f loads, materii	stries. (C1) tey steps involved in to final production. ole of product design neet user needs. (C1 odel (C2) imow's Model as a f l, structural, and aes ignificance of consid- the product design application of Asim rld product design. (gn Practice in Indust practices and method mportance of collabor ccessful products. (C role of prototyping, hts into the challeng eering, and manufac sideration in Product mportance of strengt the structural integrity actors influencing th al properties, and en thods for analyzing	lesign as a discipline and the product design proce (C1) ners in creating innovativ) ramework for product de thetic aspects of a produc dering multiple design pa process. (C2) ow's Model through case (C2) try (C3) lologies followed in the in oration, research, and ma (C3) , testing, and iteration in the ses and considerations invecturing in the industry. (C	ess, from concept re and functional sign, which includes ct. (C2) rameters and studies and examples ndustry for product rket analysis in refining product volved in integrating C3) ct design, particularly ct. (C3) such as anticipated (C3) th of product

	calculations. (C3)
	Illustrate the application of strength considerations through case studies and
	examples from different industries. (C3)
	Design for Stiffness and Rigidity (C4)
	Explore the concept of stiffness and rigidity in product design and their
	influence on the performance and functionality of the product. (C4)
	Discuss design strategies and principles for enhancing stiffness and rigidity,
	such as proper material selection, geometric considerations, and reinforcement
	techniques. (C4)
	Explain how simulation and analysis tools can be used to optimize designs for
	stiffness and rigidity. (C4)
	Illustrate the application of design for stiffness and rigidity through case studies
	and examples of products in various fields. (C4)
2	Principles and Evaluation Methods of Various Aspects of Design for X (C4)
	Introduction to Design for X (C1)
	Provide an overview of Design for X (DFX) as a set of principles and
	methodologies to enhance the design process and improve product performance.
	(C1)
	Explain the importance of considering various aspects of DFX, such as
	manufacturing, environment, serviceability, and repairability. (C1)
	Discuss the benefits of implementing DFX principles, including cost reduction,
	improved quality, and increased customer satisfaction. (C1)
	Design for Machining (C3)
	Discuss the principles and considerations for designing products that are
	suitable for machining processes. (C3)
	Explain the importance of optimizing designs for machining efficiency, material
	utilization, and dimensional accuracy. (C3)
	Introduce evaluation methods, such as Design for Manufacturability (DFM)
	analysis and simulation tools, to assess the manufacturability of designs. (C3)
	Provide examples and case studies demonstrating effective design for
	machining practices. (C3)
	Design for Sheet Metal Working (C3)
	Discuss the principles and considerations for designing products that involve
	sheet metal fabrication processes. (C3)
	Explain the importance of designing for efficient material utilization, ease of
	fabrication, and structural integrity in sheet metal applications. (C3)
	Introduce evaluation methods, such as Design for Sheet Metal Assembly
	(DFMA) analysis and forming simulations, to assess the manufacturability of
	sheet metal designs. (C3)
	Provide examples and case studies showcasing effective design for sheet metal
	working practices. (C3)
	Design for Injection Molding (C3)
	Discuss the principles and considerations for designing products that are
	intended for injection molding processes. (C3)
	Explain the importance of designing for moldability, part uniformity, and
	dimensional stability in injection molded components. (C3)
	unnensional staulity in injection molded components. (C3)

	
	Introduce evaluation methods, such as mold flow analysis and Design for
	Injection Molding (DFIM) guidelines, to assess the manufacturability of
	injection molded designs. (C3)
	Provide examples and case studies illustrating effective design for injection
	molding practices. (C3)
	Design for Environment (C3)
	Discuss the principles and considerations for designing products with a focus on
	environmental sustainability. (C3)
	Explain the importance of minimizing material waste, energy consumption, and
	environmental impact throughout the product lifecycle. (C3)
	Introduce evaluation methods, such as Life Cycle Assessment (LCA) and
	Design for Disassembly (DFD), to assess the environmental performance of
	designs. (C3)
	Provide examples and case studies demonstrating effective design for
	environment practices. (C3)
	Design for Service and Repair (C3)
	Discuss the principles and considerations for designing products that are
	serviceable and repairable throughout their lifecycle. (C3)
	Explain the importance of ease of maintenance, accessibility of components,
	and availability of spare parts in service and repair operations. (C3)
	Introduce evaluation methods, such as Design for Serviceability (DFS) analysis
	and serviceability testing, to assess the serviceability and reparability of designs.
	(C3)
	Provide examples and case studies highlighting effective design for service and
	repair practices. (C3)
3	Manufacturability Requirements (C2)
	Discuss the importance of considering manufacturability requirements during
	the product design phase. (C2)
	Explain how manufacturability impacts the efficiency, cost, and quality of the
	manufacturing process. (C2)
	Identify key manufacturability considerations, such as material selection,
	process capability, tooling requirements, and dimensional tolerances. (C2)
	Discuss the role of design for manufacturability (DFM) techniques in
	optimizing product designs for efficient and cost-effective manufacturing. (C2)
	Forging Design (C3)
	Introduce the principles and considerations for designing products that are
	suitable for forging processes. (C3)
	Explain the advantages and limitations of forging as a manufacturing method
	for producing metal components. (C3)
	Discuss design guidelines for optimizing part geometry, draft angles, fillet radii,
	and material flow during the forging process. (C3)
	Illustrate the application of forging design principles through examples and case
	studies. (C3)
	Pressed Component Design (C3)
1	Discuss the principles and considerations for designing products that involve
	Discuss the principles and considerations for designing products that involve pressed component manufacturing processes, such as stamping or deep drawing.

	(C3)
	Explain the advantages and limitations of pressed component manufacturing in
	terms of material usage, cost, and complexity. (C3)
	Discuss design guidelines for optimizing blank size, formability, and
	dimensional accuracy in pressed component designs. (C3)
	Illustrate the application of pressed component design principles through
	examples and case studies. (C3)
	Casting Design (C3)
	Introduce the principles and considerations for designing products that are
	suitable for casting processes, such as sand casting or investment casting. (C3)
	Explain the advantages and limitations of casting as a manufacturing method for
	producing complex-shaped components. (C3)
	Discuss design guidelines for optimizing part geometry, wall thickness, draft
	angles, and gating/riser systems in casting designs. (C3)
	Illustrate the application of casting design principles through examples and case
	studies. (C3)
	Die Casting and Special Castings (C4)
	Discuss the principles and considerations for designing products that are
	suitable for die casting processes or special casting methods, such as gravity die
	casting or lost wax casting. (C4)
	Explain the advantages and limitations of die casting and special castings in
	terms of production speed, complexity, and surface finish. (C4)
	Discuss design guidelines for optimizing part geometry, gating systems, draft
	angles, and tooling considerations specific to die casting and special casting
	processes. (C4)
	Illustrate the application of die casting and special casting design principles
	through examples and case studies. (C4)
4	Assembly and Assembly Process (C3)
4	
	Introduce the concept of assembly and the importance of efficient assembly
	processes in product manufacturing. (C3)
	Explain the principles of designing for assembly (DFA) to optimize product
	assembly, including minimizing part count, reducing complexity, and improving
	ease of assembly. (C3)
	Discuss different assembly methods, such as manual assembly, automated
	assembly, and robotic assembly. (C3)
	Highlight the significance of proper fixture design, tolerance analysis, and error-
	proofing techniques in ensuring successful assembly. (C3)
	Design for Assembly (DFA) and Applications (C4)
	Explain the principles and methodologies of Design for Assembly (DFA),
	including the Boothroyd/Dewhurst Method. (C4)
	Discuss the application of DFA in product design and manufacturing to improve
	assembly efficiency, reduce costs, and enhance quality. (C4)
	Present case studies showcasing the implementation of DFA principles using
	DFMA software (Design for Manufacturing and Assembly). (C4)
	Highlight the benefits and outcomes achieved through the application of DFA
	techniques in real-world scenarios. (C4)

Quality Function Deployment (QFD) (C3)
Introduce Quality Function Deployment (QFD) as a technique for translating
customer requirements into specific product design and manufacturing
characteristics. (C3)
Explain the QFD process, including capturing customer voice, identifying
critical-to-quality characteristics, and establishing design and process
parameters. (C3)
1 , ,
Discuss the application of QFD in new product development to ensure
alignment between customer expectations and product attributes. (C3)
Highlight the benefits of using QFD in improving customer satisfaction,
reducing design iterations, and enhancing product quality. (C3)
Quality Engineering and Taguchi Method (C4)
Introduce quality engineering as an approach to design and manufacture
products that meet customer expectations and achieve high levels of quality.
(C4)
Explain the principles and methodologies of the Taguchi Method, including
robust design and parameter optimization. (C4)
Discuss the application of quality engineering and the Taguchi Method in
identifying and minimizing the impact of process and design variations on
product quality. (C4)
Highlight the benefits of incorporating quality engineering and the Taguchi
Method in reducing product variability, improving reliability, and enhancing
customer satisfaction. (C4)

Teaching - Learning Strategies	Contact Hours
Lecture	30
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessn	nent		CO1	CO2	CO3	CO4			
Quiz									
VIVA									
Assignment / Prese	entation		✓	✓	✓	 ✓ 			
Unit test									
Practical Log Book	k/ Record Book					1			
Mid Semester Exam	mination 1		 ✓ 	 ✓ 	 ✓ 	 ✓ 			
Mid Semester Exam	mination 2		✓	✓	✓	 ✓ 			
University Examin	ation		✓	 ✓ 	 ✓ 	✓			
						<u>.</u>			
Feedback Process		1. Student's Feedback							
		2. Course Exit Survey							
 Students Feedback is taken through various steps Regular feedback through Mentor Mentee system. Feedback between the semester through google forms. Course Exit Survey will be taken at the end of semester. 									
References:	(List of reference books)								
	i) Geoffrey Boothroyd, Per	ter Dewhurst and W	inston A	nthony K	Lnight (20	109),			

 Product Design for Manufacture and Assembly, Taylor & Francis e-Library. ISBN: 978-1-420-08927-1. ii) A.K. Chitale and R.C. Gupta, (2005), Product Design and Manufacturing, 6th Edition, Printice Hall of India, ISBN: 9788120342828.

			I	Facu	lty of	f Eng	ginee	ring	and 7	Fechr	nolog	у			
Name of	f the De	he Department Mechanical Engineering													
Name of	f the Pr	ogra	m			E	B. Tec	h.							
Course	Code														
Course	Title					0	Comp	osite	Mate	rials					
Academ	nic Year	•				Ι	I								
Semeste	er					Ι	II								
Number	r of Cre	dits				3	1								
Course	Prerequ	ıisite	•			+	-2 Phy	sics a	and Cl	nemist	try				
Course						e. m st d th n f c c t t	Composites are a unique class of materials made from two or more distinct materials that when combined are better than each would be separately. They are non-corroding, non- magnetic, radar transparent and they are designed to provide strength and stiffness where it is needed. This course will describe different types of composites. Student will also get the idea about design and manufacturing methods involved in making of composites. Joining method and failure theories for composites are also discussed in this course. Since composites are affordable high-performance material and expanded commercial as well as industrial utilization, hence this course is quite useful.								
At the er															
CO1	Ana	lyze t	the eco	onomi	ic aspe	ects of	f using	g comj	posites						
CO2						-	•				•		re modes	5.	
CO3	Des	ign ar	nd mai	nufact	ture co	ompos	site ma	iterial	s for v	arious	applic	ations.			
CO4	_	lain tl 1 for	he rele	evance	e and	limita	tions o	of the	destru	ctive a	nd non	-destr	uctive te	st metho	ods
Mappin Outcom	0	urse	Outc	omes	s (CO	s) to	Prog	ram (Outco	omes (POs)&	& Pro	gram S	pecific	
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
CO1	1 3	2	3	4	5	6 2	7	8	9	10	11	12	3	3	1
	3	4	5	-	_	2	2	-	2	1	-	∠	5	5	1
CO2	3	3	3	3			1		1	0	2	3	3	3	2

CO3	3	2	3	2	3	-	2	-	-	-	2	2	2	3	1
CO4	3	2	-	2	1	-	2	-	1	-	-	2	2	3	2
Average	3	2.25	2.25	1.75	1	0.5	1.75	-	1	0.25	1	2.25	2.5	3	1.5
Course (Cont	ent:													
L (1	Hours	/Week	;)		T (E	Iours/	Week)		P	(Hours/	Week)	Total	Hour/	Week
	3					0				0				3	
Unit		(Cont	ent &	c Con	npete	encies								
1Define composites as m typically a reinforcement properties. (C2) Explain the concept of r structures and their roles composites. (C2) Discuss the advantages strength-to-weight ratio. Reinforcements and Ma Define reinforcements and Ma Define matrices as the m together, often polymers Discuss the different typ fibers (continuous, discond Discuss the different type matrices (thermoset, the Types of Composites (C2) Explain the various type materials used, such as from together, and laminat Discuss the characteristic including carbon fiber composites. (C2) Explain the concept of the reinforcements or matrice Carbon Fiber Composite Carbon fibers as the reinforcements and the attended the exceptional strength, stiffness, and I automotive, and sports a							einford in de of com corro rices (s the r ers (e. ateria , meta es of r mopli 2) s of co iber-ro e com cs and omposit orcen posit forcen proper	cemer termin posite sion r (C2) nateria g., ca ls sur ls, or reinfor pus), p matric astic), pompos einfor posite appli ites, g comp achiev es as a nent a rties o ight, i	at and any time to any time to	matrix he perf er conv nce, ar lded to glass) ing an nics. (C ents us les, and ed in c l matri based o ompos 2) ns of s fiber co s, whic ceific p cific ty lymer pon fib ng then	x mate forma vention d tail composed d hole (22) ed in d fabr omposed ices, a on the ites, p pecific omposed h composed h composed h composed for can er con n suita	erials i nce ch nal ma lored p posites rticles ding th compo- ics. (C posites, a nd cen reinfo particle sites, a nbine c mance compo- thon m mposit able fo	an comp naracter aterials, propertia to prov . (C2) ne reinfo osites, in 22) such as ramic m recemen e-reinfo s of con and arar lifferen require osite ma natrices es, such	oosite istics of such a es. (C2) vide stre orcement ncludin polyme natrices it and m rced mposite nid fibe t types ements. aterial u . (C3) n as hig pace,	f s high ength nts g er . (C2) natrix s, er of (C2) using h

	y_{n} filoment winding and meaning techniques (C2)
	up, filament winding, and prepreg techniques. (C3)
	Highlight the challenges and considerations in working with carbon fiber
	composites, such as cost, environmental impact, and recycling. (C3)
	Properties of Composites in Comparison with Standard Materials (C3)
	Compare the properties of composites (e.g., strength, stiffness, thermal
	conductivity) with those of standard materials, such as metals, ceramics, and
	polymers. (C3)
	Discuss the advantages and limitations of composites in terms of specific
	properties, such as high strength-to-weight ratio and anisotropic behavior. (C3)
	Highlight the potential for tailoring composite properties through reinforcement
	and matrix selection, fiber orientation, and fabrication techniques. (C3)
	Applications of Metal, Ceramic, and Polymer Matrix Composites (C3)
	Discuss the applications of metal matrix composites (MMCs), ceramic matrix
	composites (CMCs), and polymer matrix composites (PMCs) in various
	industries. (C3)
	Highlight the specific advantages and applications of each type of matrix
	composite, such as MMCs in automotive parts, CMCs in aerospace components,
	and PMCs in sporting goods. (C3)
	Discuss the considerations and challenges in selecting and designing with
	matrix composites for specific applications, including cost, manufacturability,
	and performance requirements. (C3)
2	Hand and Spray Lay-up (C4)
<i>∠</i>	
	Explain the hand lay-up technique for composite fabrication, where
	reinforcement materials are manually placed onto a mold surface and
	impregnated with resin. (C4)
	Discuss the spray lay-up method, which involves spraying a mixture of
	reinforcement fibers and resin onto a mold surface to build up the composite
	structure. (C4)
	Highlight the advantages and limitations of hand and spray lay-up techniques,
	including versatility, cost-effectiveness, and potential for air voids or
	inconsistent fiber distribution. (C4)
	Press Moulding (C4)
	Explain press moulding as a process in which composite materials are placed in
	a mold and subjected to heat and pressure to cure and shape the final product.
	(C4)
	Discuss the different press moulding techniques, such as compression moulding
1	
	Discuss the advantages of injection molding, such as high production rates,
	Discuss the advantages of injection molding, such as high production rates, precise control of fiber orientation, and the ability to manufacture intricate parts.
	and transfer moulding, and their suitability for various composite materials and applications. (C4) Highlight the benefits of press moulding, including efficient production, consistent part quality, and the ability to achieve complex shapes. (C4) Injection Molding (C4) Explain the injection molding process for composites, where a molten resin is injected into a mold cavity containing reinforcement fibers. (C4)

Highlight the considerations and challenges in injection molding of composites,
including fiber length and alignment control, material flow, and tooling design.
(C4)
Resin Injection (C4)
Explain resin injection as a method for impregnating reinforcement fibers with
resin in a controlled manner. (C4)
Discuss the different resin injection techniques, such as vacuum infusion, resin
transfer molding (RTM), and resin film infusion (RFI). (C4)
Highlight the benefits of resin injection, including uniform resin distribution,
reduced voids, and the ability to produce large, complex parts. (C4)
RRIM (Reinforced Reaction Injection Molding) (C4)
Explain the RRIM process, a variant of injection molding where reactive resins
and reinforcement fibers are injected into a mold cavity and react to form a
composite. (C4)
Discuss the advantages of RRIM, such as high strength, excellent surface finish,
and reduced cycle times compared to traditional composites. (C4)
Highlight the applications of RRIM in automotive, construction, and other
industries. (C4)
Filament Winding (C4)
Explain the filament winding process, where continuous reinforcement fibers
(filaments) are wound onto a rotating mandrel and impregnated with resin. (C4)
Discuss the benefits of filament winding, such as precise fiber alignment, high
strength-to-weight ratio, and the ability to produce cylindrical or curved
composite structures. (C4)
Highlight the considerations and challenges in filament winding, including fiber
tension control, resin impregnation, and mandrel design. (C4)
Pultrusion (C4)
Explain the pultrusion process, which involves continuous pulling of
reinforcement fibers through a resin bath, followed by curing to form a
composite profile. (C4)
Discuss the advantages of pultrusion, such as high production rates, consistent
fiber alignment, and the ability to produce linear composite profiles with
complex cross-sections. (C4)
Highlight the applications of pultrusion in construction, infrastructure, and
aerospace industries. (C4)
Centrifugal Casting (C4)
Explain centrifugal casting as a method for producing cylindrical composite
parts by rotating a mold while pouring resin and reinforcement into the mold
cavity. (C4)
Discuss the advantages of centrifugal casting, including improved fiber
alignment, reduced voids, and the ability to produce hollow components. (C4)
Highlight the applications of centrifugal casting in industries such as aerospace,
marine, and sporting goods. (C4)
Fiber/Matrix Interface (C5)
Explain the fiber/matrix interface in composites as the region where the
reinforcement fibers interact with the matrix material. (C5)
remotement more interact with the matrix material. (C3)

	Discuss the theories of adhesion at the interface, including absorption and wetting, inter diffusion, electrostatic forces, chemical bonding, and mechanical
	interlocking. (C5)
	Highlight the importance of a strong fiber/matrix interface in achieving optimal mechanical properties and load transfer in composites. (C5)
	Measurement of Interface Strength (C5)
	Discuss the methods and techniques used to measure the strength of the
	fiber/matrix interface, such as pull-out tests, micro bond tests, and microscopy
	analysis. (C5)
	Explain the significance of interface strength measurement in assessing the quality and performance of composite materials. (C5)
	Highlight the challenges and limitations associated with interface strength
	characterization. (C5)
	Influence of Interface on Mechanical Properties of Composites (C5)
	Explain how the quality and properties of the fiber/matrix interface can
	significantly affect the mechanical properties of composites, such as strength,
	stiffness, and fracture toughness. (C5)
	Discuss the mechanisms by which the interface influences properties, including
	stress transfer, interfacial debonding, and crack propagation. (C5)
	Highlight the importance of optimizing the interface properties and
	compatibility between fibers and matrices to achieve desired composite
	performance. (C5)
	Characterization of Systems: Carbon Fiber/Epoxy, Glass Fiber/Polyester, etc.
	(C5)
	Discuss the specific characterization methods used for different composite
	systems, such as carbon fiber/epoxy, glass fiber/polyester, and other
	combinations. (C5)
	Explain the techniques for evaluating key properties, including tensile strength,
	flexural strength, impact resistance, and thermal properties of composite
	systems. (C5)
	Highlight the importance of material characterization in material selection,
	design optimization, and quality control of composites. (C5)
3	Stiffness and Strength: Geometrical Aspects - Volume and Weight Fraction
	(C5)
	Discuss the relationship between the volume fraction and weight fraction of
	reinforcement in composites and their influence on stiffness and strength. (C5)
	Explain the concept of volume fraction as the ratio of the volume of the
	reinforcement phase to the total composite volume. (C5)
	Discuss the effects of varying volume and weight fractions on the mechanical
	properties of composites, including increased stiffness and strength with higher
	reinforcement fractions. (C5)
	Unidirectional Continuous Fiber, Discontinuous Fibers, Short Fiber Systems,
	Woven Reinforcements - Length and Orientation Distributions (C5)
	Describe different types of reinforcement configurations in composites,
	including unidirectional continuous fibers, discontinuous fibers, short fiber
	systems, and woven reinforcements. (C5)

 1
Discuss the significance of fiber length and orientation distributions in
determining the mechanical properties of composites, such as anisotropy,
directional strength, and stiffness. (C5)
Explain the challenges and considerations associated with controlling fiber
length and orientation in composite manufacturing processes. (C5)
Mechanical Testing: Determination of Stiffness and Strength of Unidirectional
Composites; Tension, Compression, Flexure, and Shear (C6)
Discuss the mechanical testing methods used to determine the stiffness and
strength of unidirectional composites, including tension, compression, flexure,
and shear tests. (C6)
Explain the principles and techniques involved in conducting these tests,
including sample preparation, loading configurations, and data analysis. (C6)
Highlight the importance of mechanical testing in characterizing the mechanical
properties and performance of composites for design and material selection.
Fracture: Typical Fracture Processes; Effect of Transverse Ply; Review of
Fracture Mechanics Methods and Application to Composites (C6)
Explain the typical fracture processes in composites, including matrix cracking,
fiber/matrix debonding, delamination, and fiber pull-out. (C6)
Discuss the effect of transverse ply on fracture behavior in composite laminates
and the challenges associated with interlaminar fracture. (C6)
Review the principles of fracture mechanics and its application to analyze and
predict fracture behavior in composite materials. (C6)
Impact: Typical Impact Damage; Role of Fiber, Matrix, and Interface; Low and
High-Speed Impact Test Methods (C6)
Discuss the typical impact damage mechanisms in composites, including matrix
cracking, delamination, and fiber breakage. (C6)
Explain the roles of fiber, matrix, and interface in determining the impact
resistance and damage tolerance of composites. (C6)
Describe the low and high-speed impact test methods used to evaluate the
impact behavior and performance of composites. (C6)
Fatigue: Behavior of Notched and Unnotched Specimens; Tension Testing of
Composites; Fatigue Damage - Effect of Matrix and Fiber Properties;
Implications for Component Design (C6)
Discuss the behavior of composites under fatigue loading, including the fatigue
life of notched and unnotched specimens. (C6)
Explain the influence of matrix and fiber properties on fatigue performance and
the mechanisms of fatigue damage in composites. (C6)
Discuss the implications of fatigue behavior for component design, including
considerations for material selection, load cycles, and stress concentrations.
(C6)
Environmental Effects: Influence of Moisture and Other Contaminants on Fiber,
,
Matrix, Interface; Effect on Mechanical Properties; Stress Corrosion Cracking;
Influence of High and Low Temperatures (C6)
Discuss the influence of environmental factors, such as moisture and
contaminants, on the mechanical properties of composites, including

	degradation of fiber, matrix, and interface. (C6)
	Explain the effects of high and low temperatures on the performance and behavior of composites, including thermal expansion, thermal degradation, and
	thermal cycling effects. (C6)
	Discuss the phenomenon of stress corrosion cracking in composites and its
4	implications for material selection and component durability. (C6)Joining – Advantages and Disadvantages of Adhesive and Mechanically
4	Fastened Joints (C5)
	Compare and contrast the advantages and disadvantages of adhesive joints and mechanically fastened joints in terms of strength, durability, ease of assembly, and disassembly. (C5)
	Discuss the factors to consider when selecting the appropriate joining method
	for a specific application, including material compatibility, joint strength
	requirements, environmental conditions, and manufacturing considerations.
	(C5)
	Typical Bond Strengths and Test Procedures (C5)
	Explain the concept of bond strength in adhesive joints and the factors that influence it, such as surface preparation, adhesive properties, and curing
	conditions. (C5)
	Discuss the commonly used test methods to evaluate bond strength, including
	tensile, shear, and peel tests. (C5)
	Highlight the importance of standardized test procedures for ensuring reliable
	and consistent assessment of bond strength. (C5)
	Design Philosophy and Procedures (Systems Approach) (C6)
	Introduce the design philosophy and procedures for joining structures, considering the systems approach that encompasses material selection, joint
	design, fabrication, and assembly. (C6)
	Discuss the key considerations in joint design, including load-bearing capacity, joint stiffness, fatigue resistance, and serviceability. (C6)
	Explain the iterative nature of the design process, involving analysis, testing,
	and optimization to achieve the desired performance and reliability. (C6)
	Simple Design Studies (Pressure Vessels, Torsion Bar); Factors of Safety (C6)
	Present design studies on specific applications, such as pressure vessels and
	torsion bars, highlighting the design considerations, material selection, and factors of safety involved. (C6)
	Discuss the importance of incorporating appropriate factors of safety to ensure
	the structural integrity and reliability of the joined components. (C6)
	Illustrate the iterative design process through examples, considering load
	analysis, stress calculations, and failure modes. (C6)
	Case Studies for Failure Design Process, Materials Selection, Manufacturing
	Method (C6)
	Explore case studies of failures in joined structures, analyzing the design
	process, material selection, and manufacturing methods employed. (C6) Discuss the lessons learned from these case studies and the improvements made
	Discuss the lessons learned from these case studies and the improvements made in subsequent designs to address the failure modes. (C6)
	Emphasize the importance of considering factors such as loading conditions,

material properties, joint configuration, and manufacturing quality in failure analysis and design improvements. (C6) Economic Aspects of Using Composites (C5) Discuss the economic considerations associated with using composites in various applications, including cost analysis, life cycle assessment, and benefits such as weight reduction, fuel efficiency, and maintenance savings. (C5) Highlight the trade-offs between the initial material and manufacturing costs of composites and their long-term economic advantages. (C5) Stress Analysis: Free Edge Stresses; Typical Distributions; Significance of Stacking Sequence; Significance of Ply Blocking; Effect on Failure Modes; Experimental Evidence (C6) Explain the concept of free edge stresses in composite structures and their influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckl	
 Economic Aspects of Using Composites (C5) Discuss the economic considerations associated with using composites in various applications, including cost analysis, life cycle assessment, and benefits such as weight reduction, fuel efficiency, and maintenance savings. (C5) Highlight the trade-offs between the initial material and manufacturing costs of composites and their long-term economic advantages. (C5) Stress Analysis: Free Edge Stresses; Typical Distributions; Significance of Stacking Sequence; Significance of Ply Blocking; Effect on Failure Modes; Experimental Evidence (C6) Explain the concept of free edge stresses in composite structures and their influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of buckling in structureal members, focusing on strut buckling and buckling of orthoropic plates. (C6) Buckling and buckling of orthoropic plates. (C6) Buckling and buckling of orthoropic plates. (C6) Buckling and buckling of orthoropic plates, Signi	
 Discuss the economic considerations associated with using composites in various applications, including cost analysis, life cycle assessment, and benefits such as weight reduction, fuel efficiency, and maintenance savings. (C5) Highlight the trade-offs between the initial material and manufacturing costs of composites and their long-term economic advantages. (C5) Stress Analysis: Free Edge Stresses; Typical Distributions; Significance of Stacking Sequence; Significance of Ply Blocking; Effect on Failure Modes; Explain the concept of free edge stresses in composite structures and their influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthoropic plates. (C6) Discuss the factors that affect buckling in structural members, focusing on strut buckling of orthoropic plates. (C6) 	
 various applications, including cost analysis, life cycle assessment, and benefits such as weight reduction, fuel efficiency, and maintenance savings. (C5) Highlight the trade-offs between the initial material and manufacturing costs of composites and their long-term economic advantages. (C5) Stress Analysis: Free Edge Stresses; Typical Distributions; Significance of Stacking Sequence; Significance of Ply Blocking; Effect on Failure Modes; Experimental Evidence (C6) Explain the concept of free edge stresses in composite structures and their influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Buckling in structural members, focusing on strut buckling and buckling of orthoropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	
 such as weight reduction, fuel efficiency, and maintenance savings. (C5) Highlight the trade-offs between the initial material and manufacturing costs of composites and their long-term economic advantages. (C5) Stress Analysis: Free Edge Stresses; Typical Distributions; Significance of Stacking Sequence; Significance of Ply Blocking; Effect on Failure Modes; Experimental Evidence (C6) Explain the concept of free edge stresses in composite structures and their influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geo	0 1
 Highlight the trade-offs between the initial material and manufacturing costs of composites and their long-term economic advantages. (C5) Stress Analysis: Free Edge Stresses; Typical Distributions; Significance of Stacking Sequence; Significance of Ply Blocking; Effect on Failure Modes; Experimental Evidence (C6) Explain the concept of free edge stresses in composite structures and their influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance	
 composites and their long-term economic advantages. (C5) Stress Analysis: Free Edge Stresses; Typical Distributions; Significance of Stacking Sequence; Significance of Ply Blocking; Effect on Failure Modes; Experimental Evidence (C6) Explain the concept of free edge stresses in composite structures and their influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	
 Stress Analysis: Free Edge Stresses; Typical Distributions; Significance of Stacking Sequence; Significance of Ply Blocking; Effect on Failure Modes; Experimental Evidence (C6) Explain the concept of free edge stresses in composite structures and their influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	
 Stacking Sequence; Significance of Ply Blocking; Effect on Failure Modes; Exprimental Evidence (C6) Explain the concept of free edge stresses in composite structures and their influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the ators that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	
 Experimental Evidence (C6) Explain the concept of free edge stresses in composite structures and their influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	
 Explain the concept of free edge stresses in composite structures and their influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	
 influence on stress distributions and failure modes. (C6) Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	
 Discuss the significance of stacking sequence and ply orientation in determining the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	
 the mechanical response and strength of composite laminates. (C6) Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	
 Explore the effect of ply blocking, interface delamination, and other factors on stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	
 stress concentration and failure initiation in composite structures. (C6) Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	
 Discuss the experimental evidence and testing methods used to validate stress analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	
 analysis models and predictions in composite materials. (C6) Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	1 , , ,
 Development of Engineer's Theory of Bending for Thin-Walled Beams Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	1 0
 Comprising Several Different Materials and Analysis of Shear Flow Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	
 Distribution (C6) Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	
 Explain the development of the engineer's theory of bending for thin-walled beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) 	1 0
 beams composed of different materials, including the analysis of shear flow distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	
 distribution and its influence on bending behavior. (C6) Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	
 Discuss the assumptions and simplifications involved in the theory and its application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	1 0 0
 application to practical engineering problems. (C6) Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	
 Highlight the significance of shear flow distribution in determining the strength and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	
 and stability of composite beams and structures. (C6) Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	
 Buckling: Strut Buckling, Buckling of Especially Orthotropic Plates, Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures 	
Significance of Bending-Twisting Coupling (C6) Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures	
Introduce the concept of buckling in structural members, focusing on strut buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures	
buckling and buckling of orthotropic plates. (C6) Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures	
Discuss the factors that affect buckling, including material properties, geometric constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures	
constraints, and loading conditions. (C6) Explain the significance of bending-twisting coupling in composite structures	
Explain the significance of bending-twisting coupling in composite structures	
and its influence on buckling behavior and failure modes. (C6)	
	and its influence on buckling behavior and failure modes. (C6)

Teaching - Learning Strategies	Contact Hours
Lecture	26
Practical	
Seminar/Journal Club	2

Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	2
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz				
VIVA				
Assignment / Presentation	✓	✓	✓	~
Unit test				
Practical Log Book/ Record Book				
Mid Semester Examination 1	✓	✓	✓	✓

Mid Semester Examination 2	✓	✓	✓	✓	
University Examination	✓	✓	✓	✓	
Feedback Process 1. Student's Feedback					
2. Course Exit Survey					
Students Feedback is taken through var	ious steps				

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

i) B. Frank L. Matthews and Rees D. Rawlings (1999), Composite Materials: Engineering and Science, Woodhead Publishing.

ii) Ning Hu (2012), Composites and Their Applications, in Tech Publisher

iii) PavlaTesinova (2011) Advances in Composite Materials: Analysis of Natural and Man-Made Materials, in Tech Publisher.

			I	Facul	lty of	f Eng	ginee	ering	and 7	Fechr	nolog	у				
Name of t	he De	epart	ment			N	Mechanical Engineering									
Name of t	he Pr	ogra	m			В	B. Tech.									
Course Co																
Course Ti	S	EC-I	(Soli	dWor	rks)											
Academic	I	[
Semester						I	Ι									
Number o	of Cre	dits				2										
Course Pr	ereq	uisite	:			E	ngine	eering	Grap	hics &	z Desig	gn				
Course Sy	nops	is				This course introduces students to SolidWorks, powerful 3D computer-aided design (CAD) software. Student will learn the fundamental concepts and skills necessar to create 3D models and assemblies. The course focuse on modeling techniques, design intent, parametri modeling, and assembly design.								udents essary ocuses		
Course O	utcon	nes:				•										
At the end	of the	e cou	rse, st	uden	ts wil	l be a	ble to):								
CO1	Ap	ply So	olidW	orks	tools	and t	echni	quest	to crea	ate 3D	mode	els.				
CO2	Des	sign a	nd as	semb	le con	mplex	x 3D 1	nodel	s usin	g adva	anced	Solid	Works f	features	•	
CO3		nerate embly			-	nd do	cume	ntatio	n fror	n 3D 1	nodel	s for r	nanufac	cturing a	and	
CO4			1 1			signs	to ev	aluate	e their	struct	ural in	ntegrit	y and p	erforma	ance.	
Mapping Outcomes		ourse					Prog	ram (Dutco	mes (I		& Pro	gram S	-		
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	3	2	2	4 2	3	0 1	-	-	-	10	1	12	3	2	1	
CO2	3	3	3	2	3	1	-	-	-	1	1	1	3	3	-	
CO3	3	3	3	2	3	1	1	-	-	1	1	1	3	3	-	
CO4	3	3	3	3	3	1	1	1	-	1	1	1	3	3	1	
Average	3	2.75	2.75	2.25	3	1	0.5	0.25	-	1	1	1	3	2.75	0.5	
	1	<u>I</u>	1	1	1	<u>I</u>	1	1	<u> </u>	1	1	1	I	1	1	

Course Co	ontent:									
L (He	ours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week						
	0	0	4							
Sr. No.	Content &	Competencies								
1	SolidWorks Sketching to	to SolidWorks (4 hou interface and navigati ools and constraints (C ing techniques (C3: A	on (C1: Remembering) 2: Understanding))						
2	Creating 3D Advanced sl Extruding, r Fillets, chan	Parts (10 hours) setching techniques (C	C2: Understanding) ng features (C3: Applyin Applying)	ng)						
3	Advanced P Advanced fo Analyzing) Complex sk Design inter	art Modeling (8 hours) sweeps, and sweeps wit 3: Applying) eling (C3: Applying)	h guide curves) (C4:						
4	Assembly D Creating ass Applying m Exploded vi	esign (8 hours) emblies and sub-asser ates and constraints (C ews and animations (C	nblies (C3: Applying) C3: Applying)	lyzing)						
5	Drawing and Creating 2D Dimensionin Bill of Mate	d Detailing (6 hours)	odels (C2: Understandi 3: Applying) (C2: Understanding)	• •						
6	Advanced A Advanced m Motion stud Designing fo	ssembly Techniques (nates (symmetric, widt ies and collision detec	(8 hours) (A, and path mates) (C4 (C4: Analyzing) (C4: Analyzing) (C3: A	• •						
7	Sheet Metal Introduction Creating she Bend allowa	Sheet Metal Design (6 hours)Introduction to sheet metal tools (C2: Understanding)Creating sheet metal parts (C3: Applying)Bend allowances and sheet metal features (C3: Applying)Flat patterns and sheet metal drawings (C3: Applying)								
8	Advanced M Surface mod Mold design	fodeling Techniques (leling (C3: Applying) and analysis (C4: An and structural member	8 hours) alyzing)							

	Advanced part and assembly editing (C3: Applying)
9	Simulation and Analysis (6 hours)
	Introduction to simulation tools (C2: Understanding)
	Stress analysis and optimization (C4: Analyzing)
	Static and dynamic simulations (C3: Applying)
	Result interpretation and validation (C4: Analyzing)
10	Project Work (8 hours)
	Integration of learned concepts and skills (C5: Creating)
	Designing and modeling a complex assembly (C5: Creating)
	Documentation and presentation of the project (C3: Applying)

Teaching-Learning Strategies	Contact Hours
Lecture	
Practical	15
Seminar/Journal Club	
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	10
Problem Based Learning (PBL)	15
Case/Project Based Learning (CBL)	10
Revision	5
Others If any:	
Total Number of Contact Hours	60

Assessment Methods:

Formative	Summative
Viva-voce	Practical Examination & Viva-voce
Problem Based Learning (PBL)	University Examination
Assignment	

Nature of Assessment	CO1	CO2	CO3	CO4
VIVA	✓	~	√	~
Assignment	✓	✓	✓	1

Practical Log Boo	ok/ Record	l Book	✓	✓	✓	✓			
University Exami	nation			✓	✓	✓	✓		
Feedback Proces	SS	1.	Student's Feedba	.ck					
2. Course Exit Survey									
Students Feedbac	k is taken	through var	ious steps						
1. Regular fe	edback th	rough the M	Ientor Mentee syste	em.					
			through google for						
3. Course Ex			n at the end of the	semester.					
References:	(List of	reference bo	oks)						
		Marie P. Plan 978-1585034 SolidWorks Planchard, S 53057-409-3 SolidWorks Weber, Cado 774590096 Mastering S	2021 Tutorial" by DC Publications, E	cations, E David C. Edition Ye ' by Gaur tion Year	dition Ye Planchar ar: 2021, av Verma : 2020, IS	ear: 2007, rd and Ma ISBN: 9 a and Mat SBN: 978	ISBN: arie P. 78-1- tt -		

			I	Facu	lty of	f Eng	ginee	ring	and 7	Fechr	nolog	у			
Name of th	Ν	Mechanical Engineering													
Name of th	В	. Tec	h.												
Course Co	ode														
Course Tit	tle					E	ngine	ering	g Mech	anics	Lab				
Academic	Year	•				Ι	[
Semester						Π	Ι								
Number of	f Cre	dits				1									
Course Pr	erequ	ıisite				N	IIL								
Course Sy	Course Synopsis											0	studer		0
Course Ou	itcon	ies:													
At the end	of the	e coui	rse sti	udent	ts will	be a	ble to	:							
CO1	To	To understand the concepts of forces													
CO2	To	under	stand	l the	condit	tions	of sta	tic ar	nd dyna	amic e	quilib	rium.			
CO3	To	under	stand	the	basic	princ	iples (of ph	ysics a	pplied	l to Er	nginee	ering Mo	echanic	s.
CO4	To	know	the g	geom	etric p	orope	rties c	of the	differ	ent sh	apes.				
	Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:														
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	1	1	0	0	-	1	0	0	10	1	2	0	0	3
CO2	3	3	3	3	2	-	1	0	2	0	2	2	0	1	2
CO3	3	3	3	3	2	-	1	1	1	2	2	3	1	0	2
CO4	3	3	3	3	2	-	2	1	2	1	2	2	0	0	2
Average	3.0	2.5	2.5	2.3	1.5	-	1.3	0.5	1.3	1.0	1.8	2.3	0.25	0.25	2.25
Course C	ont	ent.													
		/Week	:)		T (H	lours/	Week))	P (Hours	/Week)	1	Total	Hour/	Week

0		0	2	2							
Unit	Content & Competencies										
1	Verification of triangle law & parallelogram law of forces										
	C1										
2	Verification of C1, C2	Verification of polygon law of forces C1, C2									
3	Verification of C1,	Verification of the principle of moments using the bell crank lever apparatus C1,									
4	Verification of support reactions of a simply supported beam C1, C2										
5	Verification of C1, C2	condition of equilibr	ium of a system of forces								
6	Verification of C1, C2	axial forces in the me	embers of a truss								
7	Verification of C1, C3	equilibrium of three-	dimensional forces								
8	Determination C3	of coefficient of frict	ion between two surfaces								
9	Verification of C4	centroid of different	lamina								
10	Determination C4	of moment of inertia	of a flywheel								

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	10
Seminar/Journal Club	
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	10
Case/Project Based Learning (CBL)	
Revision	
Others If any:	

Total Number of Contact Hours	30
Total Rumber of Contact Hours	50

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4						
Quiz										
VIVA	 ✓ 	✓	✓	✓						
Assignment / Presentation										
Unit test										
Practical Log Book/ Record Book	 ✓ 	✓	 ✓ 	✓						
Mid Semester Examination 1										
Mid Semester Examination 2										
University Examination	 ✓ 	✓	 ✓ 	✓						
Feedback Process	1. Stu	ident's Fe	edback	L						
2. Course Exit Survey										
 Students Feedback is taken through variou 1. Regular feedback through Mentor 2. Feedback between the semester the 3. Course Exit Survey will be taken a 	Mentee sy rough goog	gle forms.								

References:

i) J. V. Rao, D. H. Young, S. Timoshenko, Sukumar Pati (2013), Engineering Mechanics, Tata

McGraw Hill Education. ISBN: 978-1-259-06266-7 ii) Irving H. Shames (2012), Engineering Mechanics – Statics and Dynamics, 4th Edition, Prentice-Hall of India Private limited. ISBN: 978-8-131-72883-3

			Ī	Facul	lty of	f Eng	ginee	ring	and 7	Fechr	nolog	у				
Name of	the De	epart	ment			Ν	Mechanical Engineering									
Name of	the Pr	ogra	m			В	B. Tec	h.								
Course C	Code															
Course T	itle					R	Robot	ics Ei	nginee	ering	and A	pplic	ations			
Academi	c Year	•				I	[
Semester	•					I	I									
Number	of Cre	dits				3										
Course P	rerequ	uisite				N	IA									
Course S	aj w	To understand the principles of robotic engineering and its applications. To equip students with practical knowledge that will allow them to design, build, and program a robot that can perform a variety of tasks.														
Course C At the end			rse sti	udent	s will	be al	ble to	:								
CO1	Unc	lerstai	nd the	basic	comp	onent	nents of robots.									
CO2	Diff	ferenti	ate ty	pes of	frobo	ts and	and robot grippers.									
CO3	Ana	lyze f	orces	in lin	ks and	l joint	s of a	robot.								
CO4 Program a robot to perform tasks in industrial applications.									s.							
Mapping Outcome	•	urse	Outc	omes	(CO	s) to	Prog	ram (Outco	mes (]	POs)ð	& Pro	gram S	pecific		
COs	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3	
				1	5	6	7	0	1 0	10	1 1 1	1 1 1	1	1		
CO1	1	2	3	4	5	1	/	8	9	10	11	12 2	3	2	2	

Average 3 1.75 1.75 1.25 1 - - 2 2.25 2 2 Course Content:	L (Hours/Week)				T (H	[ours/	Week))	P (Hours/	Week)	1	Total	Hour/	Week	
Average 3 1.75 1.75 1.25 1 - - 2 2.25 2 2	Course Content:															
	Average	3	1.75	1.75	1.75	1.25	1	-	-	-	-	-	2	2.25	2	2

-

-

-

-

-

-

-

-

-

-

-

-

CO2

CO3

CO4

-

-

-

3		0	0	3					
Unit	Content & C	Competencies							
Unit	Introduction Provide an ov various indus Explain the f anatomy, kin Components Describe the manipulator, Discuss the f robotic system Types and Cl Discuss the d mobility, and Explain the c humanoid rol Applications Provide exan manufacturin space explora Discuss the a including inc Drives and A Explain the v electric moto Discuss the a type of drive	to Robotics (C1) verview of robotics a stries, such as manuf undamental principle ematics, and control of a Robotic System essential component sensors, actuators, c unction and role of e m. (C2) assification of Robot lifferent types and cl application. (C2) haracteristics and ca bots, and collaborati of Robots (C2) nples of real-world a g assembly lines, m ation. (C2) dvantages and benef reased productivity, ctuators (C3) various types of drive rs, hydraulic system dvantages, limitation and actuator. (C3)	n (C2) ts of a robotic system, inclusion control system, and end-eff each component in the over ots (C2) assifications of robots base	xploration. (C1) s, including robot uding the robot ectors. (C2) rall operation of the ed on their structure, ots, mobile robots, re used, such as automation, and e applications, nhanced safety. (C2) potics, such as (C3)					
	Control Components (C3) Introduce the control components used in robotic systems, including microcontrollers, programmable logic controllers (PLCs), and feedback control systems. (C3) Explain the role of these components in monitoring and controlling the motion, position, and operation of the robot. (C3) Serial Manipulator & Parallel Manipulator (C4) Differentiate between serial manipulators and parallel manipulators in terms of their kinematic structure and characteristics. (C4) Discuss the advantages and limitations of each type of manipulator and their applications in different industries. (C4) Explain the principles of forward and inverse kinematics for both serial and parallel manipulators. (C4)								
2	Grippers (C3 Discuss the in grasping obje) mportance of grippe ects. (C3)	rs in robotic systems for m	1					

grippers, and vacuum cup grippers. (C3)
Describe the principles of operation and the advantages and limitations of each
type of gripper. (C3)
Mechanical Gripper (C3)
Explain the working principle of a mechanical gripper, including the design of
jaws or fingers for grasping objects. (C3)
Discuss the factors influencing the grasping force and the considerations for
selecting an appropriate mechanical gripper. (C3)
Grasping Force (C3)
Define the concept of grasping force and its significance in robotic manipulation
tasks. (C3)
Explain the factors affecting the grasping force, such as the gripper design,
actuation mechanism, and object properties. (C3)
Discuss the importance of optimizing the grasping force for efficient and
reliable object handling. (C3)
Engelberger-g-factors-Mechanisms for Actuation (C4)
Introduce the concept of Engelberger-g-factors, which are factors used to
evaluate the performance of industrial robots. (C4)
Discuss the various mechanisms used for actuating grippers, such as pneumatic,
hydraulic, electric, or a combination of these. (C4)
Explain the advantages and limitations of each actuation mechanism and their
impact on gripper performance. (C4)
Magnetic Gripper (C3)
Describe the working principle of a magnetic gripper, which uses magnetic
fields to hold and manipulate objects. (C3)
Discuss the applications and considerations for using a magnetic gripper in
different scenarios. (C3)
Vacuum Cup Gripper (C3)
Explain the operation of a vacuum cup gripper, which uses suction to hold and
lift objects. (C3)
Discuss the factors influencing the effectiveness of a vacuum cup gripper and
the considerations for its selection and design. (C3)
Considerations in Gripper Selection & Design (C3)
Discuss the factors to consider when selecting a gripper, such as the object size,
shape, weight, and surface properties. (C3)
Explain the importance of gripper adaptability, reliability, and ease of
integration with the robotic system. (C3)
Highlight the considerations for gripper design, including the choice of
materials, actuation mechanisms, and control methods. (C3)
Industrial Robots' Specifications (C4)
Introduce the specifications used to characterize industrial robots, such as
payload capacity, reach, speed, and accuracy. (C4)
Discuss the significance of these specifications in determining the suitability of $C(A)$
a robot for a specific application. (C4)
Selection Based on the Application (C4)
Explain the process of selecting an industrial robot based on the requirements

	and constraints of a specific application. (C4)
	Discuss the factors to consider, such as the work envelope, required tasks, cycle
	time, and safety considerations. (C4)
	Highlight the importance of matching the robot's capabilities and specifications
	to the application's demands for optimal performance. (C4)
3	Drive - Types of Drives (C3)
	Discuss the different types of drives used in robotic systems, such as electric
	drives, hydraulic drives, and pneumatic drives. (C3)
	Explain the working principles and characteristics of each drive type. (C3)
	Discuss the advantages, limitations, and applications of different drive types in
	robotic systems. (C3)
	Types of Transmission Systems (C3)
	Explain the various types of transmission systems used in robots, including gear
	transmissions, belt transmissions, and chain transmissions. (C3)
	Discuss the working principles and characteristics of each transmission system.
	(C3)
	Explain the considerations for selecting an appropriate transmission system
	based on factors such as torque requirements, speed, efficiency, and precision.
	(C3)
	Actuators and their Selection while Designing a Robot System (C4)
	Introduce the concept of actuators and their role in converting electrical,
	hydraulic, or pneumatic energy into mechanical motion in robotic systems. (C4)
	Discuss the different types of actuators commonly used in robotics, such as
	electric motors, hydraulic cylinders, and pneumatic actuators. (C4)
	Explain the factors to consider when selecting actuators, including power
	requirements, torque/speed characteristics, size, weight, and control
	compatibility. (C4)
	Discuss the trade-offs between different actuator types and the considerations
	for optimizing actuator selection for specific robot system requirements. (C4)
	Control Systems: Types of Controllers (C3)
	Explain the different types of controllers used in robotic systems, including
	proportional-integral-derivative (PID) controllers, fuzzy logic controllers, and
	model-based controllers. (C3)
	Discuss the working principles and characteristics of each controller type. (C3)
	Highlight the advantages, limitations, and applications of different controller
	types in robotic systems. (C3)
	Introduction to Closed-Loop Control (C3)
	Introduce the concept of closed-loop control in robotics, which involves
	continuously monitoring and adjusting the robot's performance based on
	feedback signals. (C3)
	Explain the benefits of closed-loop control in terms of improved accuracy,
	stability, and robustness of the robotic system. (C3)
	Discuss the basic components of a closed-loop control system, including
	sensors, actuators, feedback loops, and controllers. (C3)
4	Socio-Economic Aspect of Robotization (C5)
	Discuss the socio-economic implications of robotization, including the impact

on employment, workforce dynamics, and income distribution. (C5)
Examine the potential benefits and challenges associated with increased
automation and robotization in various industries and sectors. (C5)
Explore the ethical considerations and social implications of widespread
robotization, such as privacy concerns and the need for retraining and upskilling
of workers. (C5)
Economical Aspects for Robot Design (C4)
Explain the economic considerations involved in the design and implementation
of robotic systems, including cost-benefit analysis, return on investment (ROI),
and total cost of ownership (TCO). (C4)
Discuss factors such as initial investment, maintenance costs, energy efficiency,
and productivity gains in relation to the economic viability of robot design
decisions. (C4)
Explore strategies for cost optimization in robot design, such as component
selection, standardization, and modularization. (C4)
Safety for Robot and Standards (C4)
Discuss the importance of safety in robotics and the need for adherence to safety
standards and regulations. (C4)
Explain the various safety considerations in robot design, including risk
assessment, hazard identification, and implementation of protective measures.
(C4)
Discuss common safety features in robotic systems, such as emergency stop
buttons, safety interlocks, and protective barriers. (C4)
Highlight the role of international standards organizations in defining safety
standards for robotics. (C4)
Introduction to Artificial Intelligence (C2)
Provide an overview of Artificial Intelligence (AI) and its relevance to robotics.
(C2)
Explain the basic principles of AI, including machine learning, natural language
processing, and computer vision. (C2) Discuss the relationship between AI and robotics, and how AI techniques
enhance the capabilities of robotic systems. (C2)
AI Techniques (C3)
Introduce various AI techniques commonly used in robotics, such as neural networks, constituents, and expert systems (C^2)
networks, genetic algorithms, and expert systems. (C3)
Explain the working principles and applications of these AI techniques in (C^2)
robotic systems. (C3)
Discuss the advantages, limitations, and considerations for implementing AI
techniques in robot design. (C3)
Need and Application of AI (C3)
Explore the need for AI in robotics, including tasks that can benefit from AI
capabilities, such as perception, decision-making, and autonomous operation.
(C3)
Discuss the wide range of applications for AI in robotics, including industrial
automation, healthcare, transportation, and entertainment. (C3)
Highlight the potential benefits and challenges of integrating AI into robotic

systems. (C3)
New Trends & Recent Updates in Robotics (C4)
Provide an overview of new trends and recent advancements in robotics, such as
collaborative robots (Cobots), swarm robotics, and human-robot interaction.
(C4)
Discuss emerging technologies and their impact on the field of robotics,
including machine learning, computer vision, and cloud robotics. (C4)
Highlight recent developments in robotic research, industry applications, and
notable case studies. (C4)

Teaching - Learning Strategies	Contact Hours
Lecture	26
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	2
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)

Practical Examination & Viva-voce
Objective Structured Practical Examination
(OSPE)

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4				
Quiz								
VIVA								
Assignment / Presentation	✓	✓	~	✓				
Unit test								
Practical Log Book/ Record Book								
Mid Semester Examination 1	✓	 ✓ 	✓	✓				
Mid Semester Examination 2	✓	✓	~	✓				
University Examination	✓	 ✓ 	✓	✓				
Feedback Process	1. Student's Feedback							
	2. Cour	2. Course Exit Survey						

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

- i) Industrial Robotics / Groover M P /McGraw Hill. (ISBN-10: 0071004424, ISBN-13: 978-0071004428).
- S. R. Deb and Sankha Deb (2009), Robotics Technology and Flexible Automation, 2nd Edition, Tata McGraw-Hill Education. ISBN: 978-0-070-07791-1.
- iii) John J. Craig (2008), Introduction to Robotics: Mechanics and Control, 3rd Edition, Pearson Education. ISBN: 978-8-131-71836-0.
- iv) Theory of Applied Robotics /Jazar/Springer. (ISBN- 978-1-4419-1750-8)

			ł	Facul	lty of	f Eng	ginee	ring	and]	Fechr	nolog	у				
Name of	the De	epart	ment			Ν	Mechanical Engineering									
Name of	the Pr	ogra	m			В	B. Tech.									
Course (Code															
Course 7	R	Robot	ics Eı	nginee	ering	and A	pplic	ations I	Lab							
Academ	ic Year	•				Π	[
Semester	r					Π	I									
Number	of Cre	dits				1										
Course I	Prerequ	uisite	:			N	IA									
Course S	Course Synopsis To understand the principles of robotic engineering, and it applications. To equip students with practical knowledge t will allow them to design, build, and program a robot that perform a variety of tasks.								that							
Course (At the en	d of the	e cou					ble to									
CO2	Diff	ferenti	iate ty	pes of	f robo	ts and	robot	gripp	ers.							
CO3	Ana	lyze f	orces	in lin	ks and	l joint	s of a	robot.								
CO4	Pro	gram a	a robo	t to p	erforn	n tasks	s in in	dustria	al appl	ication	s.					
Mapping Outcome COs		urse PO	Outc	omes	(CO PO	s) to PO	Prog	ram (PO	Dutco PO	mes () PO	POs)&	k Pro PO	gram S	pecific	PSO3	
	1	2	3	4	5	6	7	8	9	10	11	12				
CO1	3	2	1	1	1	1	-	-	-	-	-	2	3	2	2	
CO2	3	1	1	1	1	1						2	3	2	2	

COs	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	PO	PO	PSO1	PSO2	PSO3
005	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	1	1	1	1	-	-	-	-	-	2	3	2	2
CO2	3	1	1	1	1	1	-	-	-	-	-	2	3	2	2
CO3	3	2	3	3	2	1	-	-	-	-	-	1	2	2	1
CO4	3	2	2	2	1	1	-	-	-	-	-	3	1	2	3
Average	3	1.75	1.75	1.75	1.25	1	-	-	-	-	-	2	2.25	2	2
Course Content:															
L (1	Hours	/Week	:)		T (H	lours/	Week)) P (Hours/Week) Total Hou				Hour/	Week		

0		0	2	1								
Unit	Content & Competencies											
1	Study of robotic arm and its configuration. C1											
2	Study the robotic end effectors. C1											
3	Study of different types of hydraulic and pneumatic valves. C1											
4	Robot programming and simulation for pick and place. C3											
5	Robot programming and simulation for Shape identification. C3											
6	Robot programming and simulation for machining (cutting, welding). C3											
7	Robot programming and simulation for writing practice. C4											
8	Robot programming and simulation for any industrial process (Packaging, Assembly).C4											
Note:	 1. At least 8 experiments/ jobs are to be performed/ prepared by students in the semester. At least 6 experiments/ jobs should be performed/prepared from the above list; the remaining two may either be performed/prepared from the above list or designed and set as per the scope of the syllabus of the Robotics Engineering and Applications. 											

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	08	
Seminar/Journal Club		
Small Group Discussion (SGD)	10	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	08	
Case/Project Based Learning (CBL)		
Revision	04	
Others If any:		
Total Number of Contact Hours	30	

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4	
Quiz					
VIVA	✓	✓	✓	✓	
Assignment / Presentation					
Unit test					
Practical Log Book/ Record Book	✓	✓	✓	✓	
Mid Semester Examination 1					
Mid Semester Examination 2					
University Examination	✓	✓	✓	✓	
Feedback Process 1. Student's Feedback					
2. Course Exit Survey					
Students Feedback is taken through various 1. Regular feedback through Mentor M	-				

- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

- i) Industrial Robotics / Groover M P /McGraw Hill. (ISBN-10: 0071004424, ISBN-13: 978-0071004428).
- S. R. Deb and Sankha Deb (2009), Robotics Technology and Flexible Automation, 2nd
 Edition, Tata McGraw-Hill Education. ISBN: 978-0-070-07791-1.
- iii) John J. Craig (2008), Introduction to Robotics: Mechanics and Control, 3rd Edition, Pearson Education. ISBN: 978-8-131-71836-0.
- iv) Theory of Applied Robotics /Jazar/Springer. (ISBN- 978-1-4419-1750-8)

Faculty of Engineering and Technology						
Name of	the Department	Mechanical Engineering				
Name of	the Program	B. Tech.				
Course C	Course Code					
Course T	itle	Introduction to Electric and Hybrid Vehicles				
Academi	c Year	II				
Semester	er III					
Number	er of Credits 3					
Course P	Prerequisite NIL					
Course S	Course Synopsis This course introduces the fundamental concepts, print analysis and design of hybrid and electric vehicle material for this course will be prepared in such a mann it will be useful for post-graduate students, te practitioners and final year undergraduate students.					
Course O	Outcomes:					
At the end	d of the course, students will b	be able to:				
CO1	Describe about working principle of electric vehicles.					
CO2	Explain the construction and working principle of various motors used in electric vehicles.					
CO3	Understand about working pr	Understand about working principle of electronics and sensor less control in electric vehicles				
CO4	Describe the different types and working principle of hybrid vehicles.					

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	-	1	1	3	2	3	1	2	2	1	1	3	1	1
CO2	3	2	2	1	3	-	2	-	-	-	1	3	3	2	-
CO3	3	2	3	2	3	1	2	1	-	-	-	2	3	2	-
CO4	3	2	1	-	2	-	1	-	1	1	1	2	3	2	1
Average	3	1.5	1.75	1	2.75	0.75	2	0.5	0.75	0.75	0.75	2	3	1.75	0.5
Course Content:															

L (Hours/Week)	T (Hours	s/Week)	P (Hours/Week)	Total Hour/Week
3	0)	0	3
Unit C	Content & Compet	tencies		
1Elect Need reaso econ depe Type inclu Plug (FCE (C3) Cost vehid and elect (C3) End mana elect (C3) End mana elect tuel of ef Cabl in e syste mech syste mech syste mech syste dof di Batte elect and elect and vehid and elect fuel of ef Cabl in e syste mech syste mech syste and vehid and elect fuel of ef cabl in e syste mech syste mech syste mech syste wehid and voldi elect tuel of di Batte elect and vehid elect tuel of di batte elect tuel of di <b< td=""><th>ric Vehicle – Need for Electric Vehicies ons for the adoption omic benefits of indence on fossil fue s of Electric Vehicles ding Battery Electric end Hybrid Electric EVs) (C2), and an and Emissions: Er- eles, including upfranalyze the environ ric vehicles compar- of Life: Understam agement of electri- ronic components er disposal of electri- ric Vehicle Techno- cle Layouts: Analy- ric Vehicle (BEV) cell layout (C3), ar ficiency, performan- es and Components er disposal of electri- ric vehicles, s- ms, and energy s- nanical requiremen- ms (C3). cle Controls: Expla- eles, including mot- vehicle dynamics co- fiferent control strat- teries – Overview an ery Overview: Under Solid-State Batteri- gy density, power d- ery Types: Different</th><th>I, Types, C les: Under n of electric electric els (C3). hicles: C ric Vehicle alyze their valuate the ront costs, onmental red to cor nd the chai ic vehicle (C2), and ric vehicle ology – La vze differe layout, se nd evaluate nd, evaluate nd, evaluate sic vehicle ology – La vze differe layout, se nd evaluate nd, and pa s: Unders such as e storage sy tts for cal ain the co tor control ontrol (C2 regies (C3 nd Types, f erstand th as Lithiun ies (C2), and trop control control (C2 regies (C3 nd Types, f erstand th as Lithiun ies (C2), and trop control control (C2 regies (C3) nd Types, f erstand th as Lithiun ies (C2), and trop control control (C2 regies (C3) nd Types, f erstand th as Lithiun ies (C2), and trop control control (C2)</th><th>ric vehicles (C2), and a vehicles in reducing lassify different types les (BEVs), Hybrid Ele es (PHEVs), and Fuel ir characteristics, adva ne cost considerations a maintenance, and ope impact and emissions eventional internal com allenges and considerat e components, includin d analyze strategies for e components (C3). ayouts, Cables, Component ent electric vehicle layo eries hybrid layout, par te their advantages and ackaging (C4). tand the role and funct electric motors, power ystems (C2), and anal bles and connectors u ontrol systems and algo ol, battery management c), and evaluate the perf). Plug-in and Life (C2) me principles and operat n-ion (Li-ion), Nickel-N and analyze their ch d cycle life (C3). veen various types of b ry and performance ch</th><th>and energy efficiency nalyze the societal and carbon emissions and of electric vehicles, ctric Vehicles (HEVs), Cell Electric Vehicles ntages, and limitations associated with electric rational expenses (C3), reduction potential of bustion engine vehicles ions for the end-of-life ng batteries and other r recycling, reuse, and ents, Controls (C4) uts, such as the Battery allel hybrid layout, and disadvantages in terms ion of key components electronics, charging yze the electrical and sed in electric vehicle orithms used in electric , regenerative braking, formance and efficiency ion of batteries used in Metal Hydride (NiMH), aracteristics, including atteries used in electric naracteristics (C2), and</th></b<>	ric Vehicle – Need for Electric Vehicies ons for the adoption omic benefits of indence on fossil fue s of Electric Vehicles ding Battery Electric end Hybrid Electric EVs) (C2), and an and Emissions: Er- eles, including upfranalyze the environ ric vehicles compar- of Life: Understam agement of electri- ronic components er disposal of electri- ric Vehicle Techno- cle Layouts: Analy- ric Vehicle (BEV) cell layout (C3), ar ficiency, performan- es and Components er disposal of electri- ric vehicles, s- ms, and energy s- nanical requiremen- ms (C3). cle Controls: Expla- eles, including mot- vehicle dynamics co- fiferent control strat- teries – Overview an ery Overview: Under Solid-State Batteri- gy density, power d- ery Types: Different	I, Types, C les: Under n of electric electric els (C3). hicles: C ric Vehicle alyze their valuate the ront costs, onmental red to cor nd the chai ic vehicle (C2), and ric vehicle ology – La vze differe layout, se nd evaluate nd, evaluate nd, evaluate sic vehicle ology – La vze differe layout, se nd evaluate nd, and pa s: Unders such as e storage sy tts for cal ain the co tor control ontrol (C2 regies (C3 nd Types, f erstand th as Lithiun ies (C2), and trop control control (C2 regies (C3 nd Types, f erstand th as Lithiun ies (C2), and trop control control (C2 regies (C3) nd Types, f erstand th as Lithiun ies (C2), and trop control control (C2 regies (C3) nd Types, f erstand th as Lithiun ies (C2), and trop control control (C2)	ric vehicles (C2), and a vehicles in reducing lassify different types les (BEVs), Hybrid Ele es (PHEVs), and Fuel ir characteristics, adva ne cost considerations a maintenance, and ope impact and emissions eventional internal com allenges and considerat e components, includin d analyze strategies for e components (C3). ayouts, Cables, Component ent electric vehicle layo eries hybrid layout, par te their advantages and ackaging (C4). tand the role and funct electric motors, power ystems (C2), and anal bles and connectors u ontrol systems and algo ol, battery management c), and evaluate the perf). Plug-in and Life (C2) me principles and operat n-ion (Li-ion), Nickel-N and analyze their ch d cycle life (C3). veen various types of b ry and performance ch	and energy efficiency nalyze the societal and carbon emissions and of electric vehicles, ctric Vehicles (HEVs), Cell Electric Vehicles ntages, and limitations associated with electric rational expenses (C3), reduction potential of bustion engine vehicles ions for the end-of-life ng batteries and other r recycling, reuse, and ents, Controls (C4) uts, such as the Battery allel hybrid layout, and disadvantages in terms ion of key components electronics, charging yze the electrical and sed in electric vehicle orithms used in electric , regenerative braking, formance and efficiency ion of batteries used in Metal Hydride (NiMH), aracteristics, including atteries used in electric naracteristics (C2), and

	vehicle batteries (C2), analyze the factors affecting battery life, including charging cycles, temperature, and depth of discharge (C3), and assess strategies for prolonging battery life and maximizing its performance (C4). Ultra-capacitor, Charging – Methods and Standards, Alternate Charging Sources – Wireless & Solar (C3) Ultra-capacitor: Understand the principles and applications of ultra-capacitors in electric vehicles (C2), analyze their advantages and limitations compared to batteries (C3), and evaluate their potential for energy storage and fast charging in electric vehicles (C4). Charging Methods and Standards: Analyze different charging methods for electric vehicles, including AC charging, DC fast charging, and wireless charging (C3), and understand the international standards and protocols for electric vehicle charging infrastructure (C2). Alternate Charging Sources – Wireless & Solar: Evaluate the feasibility and benefits of wireless charging technologies for electric vehicles (C3), analyze the use of solar power as an alternate charging source for electric vehicles (C3), and assess their impact on the efficiency, convenience, and sustainability of electric
	vehicle charging (C4).
2	 Motors (DC, Induction, BLDC) – Types, Principle, Construction, Control (C4) DC Motors: Explain the operating principle and construction of DC motors, including brushed and brushless types (C2), analyze their characteristics such as torque-speed characteristics and efficiency (C3), and design control systems for DC motor speed and direction (C4). Induction Motors: Describe the working principle and construction of induction motors (C2), differentiate between single-phase and three-phase induction motors (C2), analyze their performance characteristics, including torque-speed characteristics and efficiency (C3), and design control systems for induction motors (C2), analyze their performance characteristics, including torque-speed characteristics and efficiency (C3), and design control systems for induction motor speed and torque (C4). Brushless DC (BLDC) Motors: Understand the operating principle and construction of BLDC motors (C2), analyze their advantages over brushed DC motors and induction motors (C3), and design control systems for BLDC motor speed and position (C4). Electric Drive Trains (EDT) – Series HEDT (Electrical Coupling) – Power Rating Design, Peak Power Source (PPS); Parallel HEDT (Mechanical Coupling) – Torque Coupling and Speed Coupling (C5) Series Hybrid Electric Drive Train: Explain the concept of a series hybrid electric drive train (C2), analyze the power source (PPS) system for optimal performance (C4). Parallel Hybrid Electric Drive Train: Understand the working principle of a parallel hybrid electric drive train (C2), analyze the torque coupling and speed coupling mechanisms between the internal combustion engine and electric motor (C3), and design control systems for seamless power distribution and optimal efficiency (C4).
	Switched Reluctance Motors (SRM) Drives – Basic Structure, Drive Converter,

	Design (C4) SRM Basic Structure: Describe the construction and working principle of switched reluctance motors (SRMs) (C2), analyze their advantages and limitations compared to other motor types (C3), and evaluate their suitability for specific applications (C3). Drive Converter: Understand the role of drive converters in SRM systems (C2), analyze different converter topologies and control strategies for SRMs (C3), and design converter systems for efficient power conversion and motor control (C4). SRM Design: Analyze the factors affecting the design of SRMs, including magnetic circuit design, winding configuration, and rotor geometry (C3), optimize the motor design parameters for desired performance characteristics (C4), and evaluate the impact of design choices on motor efficiency and torque output (C4)
3	 Basic Electronics Devices – Diodes, Thyristors, BJTs, MOSFETs, IGBTs, Convertors, Inverters (C3) Diodes: Understand the working principle and characteristics of diodes (C2), analyze their applications such as rectification and voltage regulation (C3), and design diode-based circuits for specific purposes (C3). Thyristors: Describe the operation and characteristics of thyristors (C2), analyze their applications in power control and switching circuits (C3), and design thyristor-based circuits for efficient power conversion (C3). BJTs (Bipolar Junction Transistors): Explain the construction and operation of BJTs (C2), analyze their amplification and switching characteristics (C3), and design BJT-based circuits for signal amplification and switching applications (C3). MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors): Understand the working principle and structure of MOSFETs (C2), analyze their advantages in terms of high switching speed and low power consumption (C3), and design MOSFET-based circuits for power control and amplification (C3). IGBTs (Insulated Gate Bipolar Transistors): Describe the construction and operation of IGBTs (C2), analyze their characteristics combining the advantages of MOSFETs and BJTs (C3), and design IGBT-based circuits for high-power applications (C3). Converters and Inverters: Understand the operation and types of power converters, including rectifiers and DC-DC converters (C2), analyze the principles of power inversion and the operation of inverters (C3), and design converter and inverter circuits for efficient power conversion (C3). Safety – Risks and Guidance, Precautions, High Voltage Safety, Hazard Management (C4) Risks and Guidance: Identify potential risks associated with electronics devices and circuits (C2), provide guidance on safe handling and operation of electronic components and systems (C3), and develop safety protocols and guidelines for working with high voltage and hazardous

	-
	applications (C2), identify potential hazards and risks in different electronic systems (C3), and implement appropriate safety measures, such as grounding, insulation, and protective devices (C4). High Voltage Safety: Demonstrate knowledge of high voltage safety guidelines and regulations (C2), assess potential risks and hazards associated with high voltage systems (C3), and implement safety measures to mitigate risks, including proper insulation, protective clothing, and equipment (C4). Hazard Management: Identify potential hazards in electronic systems and circuits (C2), develop hazard management strategies and protocols (C3), and implement measures to prevent or mitigate risks, such as proper labeling, isolation, and emergency shutdown procedures (C4). Sensors - Autonomous EV cars, Self-Drive Cars (C3) Autonomous EV Cars: Understand the role and importance of sensors in autonomous electric vehicles (C2), analyze different types of sensors used for perception, including cameras, LiDAR, radar, and ultrasonic sensors (C3), and
	evaluate their performance and integration in autonomous driving systems (C3).
	Self-Drive Cars: Describe the sensor technologies and systems used in self-
	driving cars (C2), analyze the sensor fusion techniques for accurate perception
	and decision-making in autonomous driving (C3), and assess the capabilities
4	and limitations of sensor-based autonomous driving systems (C3)
4	Hybrid Electric Vehicles (HEVs) – Classification – Micro, Mild, Full, Plug-in, EV (C2) Classification: Differentiate between various types of hybrid electric
	vehicles, including micro, mild, full, plug-in, and electric vehicles (C2).
	Understand their respective characteristics, benefits, and limitations (C2).
	Layout and Architecture – Series, Parallel, and Series-Parallel Hybrid (C3)
	Series Hybrid: Explain the layout and working principle of series hybrid
	architecture, where the internal combustion engine serves as a generator to
	charge the battery, and the electric motor provides propulsion (C2). Analyze the advantages and disadvantages of series hybrid systems (C3).
	Parallel Hybrid: Describe the layout and operation of parallel hybrid
	architecture, where both the internal combustion engine and the electric motor
	can provide propulsion power (C2). Analyze the advantages and disadvantages
	of parallel hybrid systems (C3).
	Series-Parallel Hybrid: Explain the concept and architecture of series-parallel
	hybrid systems, which combine elements of both series and parallel hybrids (C_2) Analyze the hanafite and shallonges of series parallel hybrid
	(C2). Analyze the benefits and challenges of series-parallel hybrid configurations (C3).
	Propulsion Systems and Components (C3)
	Propulsion Systems: Analyze the different propulsion systems used in hybrid
	electric vehicles, including internal combustion engines, electric motors, and
	their integration (C3). Understand the power flow and energy management
	strategies in hybrid propulsion systems (C3).
	Components: Identify and describe the key components of hybrid electric vehicles, such as batteries, electric motors, power electronics, regenerative
	braking systems, and control units (C2). Analyze their functions, characteristics,
	and interactions within the hybrid system (C3).
	· · · · · · · · · · · · · · · · · · ·

Regenerative Braking, Economy, Vibration, and Noise Reduction (C3)
Regenerative Braking: Explain the concept and operation of regenerative
braking in hybrid electric vehicles, where the electric motor converts kinetic
energy into electrical energy for recharging the battery (C2). Analyze the
benefits of regenerative braking in terms of energy efficiency and improved
vehicle range (C3).
Economy: Evaluate the fuel economy and energy efficiency of hybrid electric
vehicles compared to conventional vehicles (C3). Analyze the factors that
contribute to improved fuel economy, including the use of electric power and
regenerative braking (C3).
Vibration and Noise Reduction: Understand the methods and technologies
employed in hybrid electric vehicles to reduce vibration and noise levels (C2).
Analyze the impact of hybrid systems on vehicle noise and vibration
characteristics (C3). Evaluate the effectiveness of vibration and noise reduction
measures (C3).
Hybrid Electric Vehicles System – Analysis and Types, Controls (C4)
Analysis and Types: Perform analysis and evaluation of hybrid electric vehicle
systems, considering factors such as power train efficiency, energy storage, and
system integration (C4). Differentiate between different types of hybrid systems
based on their architecture, power flow, and control strategies (C4).
Controls: Understand the control algorithms and strategies used in hybrid
electric vehicle systems, including power distribution, energy management, and
mode switching (C3). Analyze the role of control systems in optimizing the
performance and efficiency of hybrid vehicles (C4).
ming Strataging and Contact Hours

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
Lecture	26
Practical	
Seminar/Journal Club	4
Small Group Discussion (SGD)	6
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	4
Others If any:	
Total Number of Contact Hours	45

Formative	Summative

Multiple Choice Q	uestions (MCQ)	Mid Semester Examination 1							
Viva-voce		Mid Semeste	Mid Semester Examination 2 (Mid Term 3 is						
		optional)							
Assignments		University E	nd Term	Examin	ation				
Student Seminar		Project							
Problem Based Lea	arning (PBL)								
Mapping of Asses	sment with COs								
Nature of Assessn	nent		C01	CO2	CO3	CO4			
Assignment / Prese	entation		 ✓ 	✓	 ✓ 	 ✓ 			
Mid Semester Exam	mination 1		✓	✓	✓	✓			
Mid Semester Exam	mination 2		✓	✓	✓	✓			
University Examin	ation		✓	✓	✓	✓			
Feedback Process		1. Student's Feedback							
		2. Course Exit Survey							
 Regular fee Feedback b Course Exit 	is taken through various s dback through Mentor Me etween the semester throu t Survey will be taken at t	entee system. Igh google forms he end of semest							
References:	(List of reference books))							
	 Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003 								

			I	Facul	lty of	f Eng	ginee	ering	and [Fechr	nolog	у			
Name of the Department							Mechanical Engineering								
Name of t	he Pr	ogra	m			В	B. Tec	h.							
Course Co	ode														
Course Ti	tle					Iı	ntrodu	uction	to El	ectric	and H	ybrid	Vehicle	es Lab	
Academic	Year	•				I	[
Semester						I	I								
Number o	f Cre	dits				1									
Course Pr	erequ	isite	:			В	asics	of Au	ıtomo	bile E	nginee	ering			
Course Sy						This practical course introduces the fundamental con- principles, analysis and design of hybrid and electric veh The Lab Work will be useful for post-graduate stud teachers, practitioners and final year undergraduate stud in the field of Electric and Hybrid Vehicles.						ehicles. udents			
Course O	utcon	ies:													
At the end	of the	e cou	rse, st	uden	ts wil	l be a	ble to):							
CO1	Der	nonst	trate v	variou	is elec	ctric 1	motor	s driv	es use	ed in E	Electric	c Veh	icles.		
CO2	Der	nonst	trate i	ise of	sola	r base	d EV	charg	ging st	tation.					
CO3	Ide	ntify	vario	us coi	npon	ents o	of ele	ctric a	nd hy	brid e	lectric	vehic	ele and a	analyze	its
	per	forma	ince.												
CO4	Der	nonst	rate t	he us	e of I	BMS	in ma	nagin	g ener	rgy sto	orage c	levice	s of EV	′s.	
Mapping Outcomes COs		urse PO	Outc	omes	(CO PO	s) to PO	Prog	ram (PO	Outco PO	mes () PO	POs)ð	& Pro	gram S	pecific	PSO3
COS	1	2	3	4	5	6	7	8	9	10	11	12	1501	1502	1505
CO1	3	-	1	1	3	2	3	1	2	2	1	1	3	1	1
CO2	3	2	2	1	3		2				1	3	3	2	-
CO3	3	2	3	2	3	- 1	2	- 1	-	-	1	2	3	2	-
CO4						1			-	-	-		3	2	1
Average	3	2	1	- 1	2	- 0.75	1 2	- 0.5	1 0.75	1 0.75	1 0.75	2	3	1.75	0.5
)		1 1././												

Course (Content:							
L (I	Hours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week				
	3	0	0	3				
Unit	Content	& Competencies						
1	Electric Rick C1, C2	kshaw Motor kit						
2	BLDC moto C1, C2	BLDC motor-based EV C1, C2						
3	PMSM base C1, C2	PMSM based Electric vehicle C1, C2						
4	Induction me C1, C2	Induction motor based electric vehicle C1, C2						
5	Study of off- C1, C2	Study of off-grid solar Inverter C1, C2						
6	Study of 4 L C1, C2	eg Semikron Stack						
7	Solar based 2 C1, C2	EV Charging station						
8	Study of elec C1, C2	ctric vehicle system						
9	Study of hyb C1, C2	orid electric vehicle sy	vstem					
10		Demonstration of battery management System C1, C2, C3, C4						

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	24	
Seminar/Journal Club		
Small Group Discussion (SGD)	2	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	2	
Case/Project Based Learning (CBL)		

Revision	2
Others If any:	
Total Number of Contact Hours	30

Formative	Summative
Viva-voce	Practical Examination & Viva-voce
	University Examination

Nature of Assessm	nent		CO1	CO2	CO3	CO4
VIVA			 ✓ 	✓	✓	✓
Practical Log Book	x/ Record Book		 ✓ 	✓	✓	✓
University Examin	ation		~	✓	✓	✓
Feedback Process		1.	Student's	Feedback		
		2.	Course Ex	tit Survey		
2. Feedback b	 dback through Mentor Methods etween the semester thro t Survey will be taken at (List of reference books 1. Iqbal Hussein, E Fundamentals, C 2. Mehrdad Ehsani Electric, Hybrid Theory and Desi 3. James Larminie, Explained, Wile 	ugh g the er 5) Electr CRC , Yim Elect gn, C John	ic and Hyb Press, 200 ni Gao, Sel tric and Fu CRC Press, n Lowry, E	ester. orid Vehicle 3. bastian E. C tel Cell Veh , 2004.	Gay, Ali En nicles: Func	lamentals,

	FACULTY OF ENGINEERING AND TECHNOLOGY																		
Name	of the	Depa	rtmen	ıt		C	ompu	ter Sci	ience	Engir	neering								
Name	of the	Prog	ram			В	.Tech	•											
Cours	e Cod	e																	
Cours	e Title	•				0	bject	Orier	nted P	rogra	amming								
Acade	mic Y	ear				II													
Semes	ter					II	Ι												
Numb	er of (Credit	S			3													
Cours	e Prer	equisi	ite			P	rograi	nming	g for P	roblei	n Solvin	g using	C++						
Cours	e Syno	opsis				Ir	ntrodu	ces the	e princ	ples	of data a	bstracti	ion, inh	eritance a	and				
						p	olymc	orphisr	n. Intr	oduce	es the prin	nciples	of virtu	al functi	ons and				
						p	olymc	orphisr	n										
Course	e Outo	comes	:																
		f the course students will be able to:																	
CO1						rammi	-	-	•										
CO2						data a													
CO3	Deve	elop ja	va pro	grams	s with	reusab	ility c	oncep	t.										
CO4	Hand	ile exc	ceptior	ns in p	rogran	nming													
Mappi	ing of	Cours	se Out	tcome	s (CO	s) to P	rogra	ım Ou	tcome	es (PC	Ds) & Pr	ogram	Specifi	ic Outco	mes:				
Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PS			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	04			
CO1	3	2	-	-	-	-	-	-	-	-	-	-	1	-	1	-			
CO2	3	3	1	2	-	-	-	-	1	-	-	-	1	1	1	-			
CO3	3	3	1	2	-	-	-	-	1	-	-	-	1	1	1	-			
CO4	3	2	1	-	-	-	-	-	-	-	-	-	1	-	1	-			
Aver	3	2.5	0.75	1	-	-	-	-	0.5	-	-	-	1	0.5	1	-			
age Cours	o Cor	tont.																	
L (Ho			т /Т	Hours	/Weeł	7)	<u>т</u>	P (Hou	re/W/	alz)	CL (H	011FG/XX		Tatal	Hour/W	/oolz			
L (Ho Wee			1) 1	Tours	/ vv eer	x)		(1100	11 5/ VV (CK)		JUL 5/ VV	CCK)	TOTAL		CUN			
3		0					0				0			3					
							_												

Unit	Content and Competency
1	1. Overview of OOP concepts Abstraction, Encapsulation, Inheritance and Polymorphism. (C2:
	Comprehension)
	2. Explain basics: Structure of a java program, Data types, Declaration of variables, Expressions,
	Operators, Operator Precedence, Evaluation of expressions, Type conversions. (C2:
	Comprehension)
	3. Define Pointers, Arrays, Pointers and Arrays, Strings, Structures, References. (C1: Knowledge)
	4. Demonstrate Flow control statement- if, switch, while, for, do, break, continue, go to statements.
	(C3: Application)
	5. Define Functions - Scope of variables, Parameter passing, Default arguments, inline functions,
	Recursive functions, Pointers to functions. (C1: Knowledge)
	6. Implement Dynamic memory allocation and de-allocation operators-new and delete. (C6:
	Evaluation)
	7.Demonstrate Preprocessor directives (C3: Application)
2	1. Explain Classes and Data Abstraction: Class definition, Class structure, Class objects, Class
	scope, and this pointer, Friends to a class, Static class members, and Constant member functions.
	(C2: Comprehension)
	2. Describe Constructors and Destructors, Dynamic creation and destruction of objects, Data
	abstraction, ADT and information hiding. (C2: Comprehension)
3	1. Define Inheritance: Defining a class hierarchy, Different forms of inheritance. (C1: Knowledge)
	2. Defining the Base and Derived classes, Access to the base class members, Base and Derived
	class construction, Destructors. (C1: Knowledge)
	3. Explain Virtual base class. (C2: Comprehension)
	4. Demonstrate Virtual Functions and Polymorphism: Static and Dynamic binding, virtual
	functions, Dynamic binding through virtual functions, Virtual function call mechanism, Pure
	virtual functions. (C3: Application)
	5. Explain Abstract classes, Implications of polymorphic use of classes, and Virtual destructors.
	(C2: Comprehension)
4	1. Define Exception Handling and Benefits of exception handling. (C1: Knowledge)
	2. Describe Throwing an exception by try block and Catching an exception. (C2: Comprehension)
	3. Explain Exception objects, Exception specifications, Stack unwinding, Rethrowing an exception,
	and Catching all exceptions. (C2: Comprehension)

Learning Strategies and Contact Hours

Learning Strategies	Contact Hours	
Lecture	30	
Practical		
Seminar/Journal Club	2	
Small Group Discussion (SGD)	1	
Self-Directed Learning (SDL) / Tutorial	2	
Problem Based Learning (PBL)	4	
Case/Project Based Learning (CBL)	2	
Revision	4	
Others If any:		
Total Number of Contact Hours	45	

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2
Objective Structured Clinical Examination	University Examination
(OSCE)	
Objective Structured Practical Examination	Dissertation
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Short Answer Questions (SAQ)
Problem Based Learning (PBL)	Long Answer Question (LAQ)
Journal Club	Practical Examination & Viva-voce
	Objective Structured Clinical Examination
	(OSCE)
	Objective Structured Practical Examination
	(OSPE)

Nature of Assess	sment	CO1	CO2	CO3	CO4	
Quiz		✓	✓	✓	✓	
VIVA						
Assignment / Pres	sentation	✓	✓	✓	✓	
Unit test		✓	✓	✓	 ✓ 	
Clinical assessme	ent					
Clinical/Practical	Log Book/ Record Book					
Mid Semester Ex	Mid Semester Examination 1			✓	 ✓ 	
Mid Semester Ex	amination 2	✓	✓	✓	✓	
University Exami	nation	✓	✓	✓	✓	
Feedback Proces	6S	1. Stud	ent's Feedba	ck		
References: Core Java Volume IFundamentals (11th Edition) Author – Cay S. Horstmann Latest Edition – 11th Edition Publisher – Prentice Hall Publisher – State St						

				F	Faculty	y of E	ngine	ering a	and Tee	chnolo	gy							
Name of the	ne Dep	artm	ent			C	Compu	ter Sc	ience I	Engine	ering							
Name of th	ne Pro	gram				B	B. Tech.											
Course Co																		
Course Tit	tle					C	Object Oriented Programming Lab											
Academic Year Semester Number of Credits							II											
							II											
Course Pr	Course Prerequisite						JIL											
Course Synopsis							-	.	student ogies o			e fami	liar witl	h the St	andarc			
Course Ou	itcome	es:																
At the end																		
CO1			•					U			Ũ		•	igm an	d over			
	stru	structured programming and become familiar with the fundamental concepts in OOP																
CO2	Den	nonsti	rate ai	n abil	ity to	desig	n and	devel	lop jav	a prog	grams,	analy	ze, and i	interpret	objec			
	orie	nted d	lata ar	nd rep	ort res	sults.												
CO3	Den	nonsti	rate a	ın ab	oility	to de	esign	an o	bject	oriente	ed sys	tem,	AWT c	compone	nts or			
	mul	tithrea	aded p	proces	s as p	er nee	eds and	d spec	ificatio	ons								
CO4	Den	nonsti	rate ar	ı abili	ity to	visua	lize aı	nd wo	rk on l	aborat	ory an	d mul	tidiscipli	inary tas	ks like			
	con	sole a	nd wi	ndow	s appli	icatio	ns bot	h for s	tandal	one an	d App	lets pro	ograms					
Mapping o	of Cou	rse O PO	utcon PO	nes (C	COs) t PO	o Pro	gram PO	Outc	omes (PO	(POs)	& Pro	gram PO	Specific	Outcon	nes: PSO3			
	1	2	3	4	5	6	7	8	9	10	11	12						
CO1	3	1	2	-	3	1	-	-	-	-	-	-	3	2	1			
CO2	3	2	2	-	-	1	-	-	-	-	-	-	3	2	-			
CO3	3	2		-	-	-	-	-	-	-	-	-	3	2	-			
CO4	3	2	3	3	1	-	-	-	-	-	-	-	3	2	1			
Average	3.0	1.8	2.3	0.8	1.0	0.5	-	-	-	-	-	-	3.0	2.0	0.5			
<u> </u>																		
Course Co			2)		ТЛ	01170	Weel	<u>. </u>	D /1	Uorra	/West-)	Tata	1 U	Woole			
L (1	Hours/	vv eel	s.)		1 (H	ours/	Week	J	r (1	Hours	vveek	eek) Total Hour/Week						

	0	0	4	4							
		Content & Co	ompetencies								
Sr. No.	Title and Competency										
1		program to find the Fib 1: Knowledge)	oonacci series using recursi	ve and non recursive							
2	Write a java p	program to multiply tw	vo given matrices. (C1: Kno	owledge)							
3	Write a java p Knowledge)	Write a java program for Method overloading and Constructor overloading. (C1: Knowledge)									
4	Write a java p Knowledge)	program to display the	employee details using Sca	anner class. (C1:							
5	Write a java p Knowledge)	program that checks w	hether a given string is pali	ndrome or not. (C1:							
6	Write a java p	program to represent A	bstract class with example	. (C1: Knowledge)							
7	Write a java p	program to implement	Interface using extends key	word. (C1: Knowledge)							
8	Write a java p	program to create user	defined package. (C1: Kno	wledge)							
9	Write an appl	et program that displa	ys a simple message. (C1: 1	Knowledge)							
10	Write a java p	program that connects	to a database using JDBC.	(C1: Knowledge)							
Note:											

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	30

Seminar/Journal Club	
Small Group Discussion (SGD)	20
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	10
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	60

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz				
VIVA	✓	✓	✓	✓
Assignment / Presentation				
Unit test				
Practical Log Book/ Record Book	~	✓	~	✓
Mid-Semester Examination 1				
Mid-Semester Examination 2				
University Examination	✓	✓	✓	✓

Feedback Proces	s 1. Student's Feedback
	2. Course Exit Survey
References:	Core Java Volume I-Fundamentals (11th Edition)
	Author – Cay S. Horstmann
	Latest Edition – 11th Edition
	Publisher – Prentice Hall

SEMESTER - IV

~	
Course Code	Course Title
	Strength of Materials
	Material Engineering & Technology
	Manufacturing Processes
Program	n Electives Course - II
	Steam Power Generation
	Total Quality Management
	Production Planning & Control
	Mechanical Vibration
	Tool Design
	AECC-IV
	VAC-IV
	SEC-II (ANSYS)
	Strength of Materials Lab
	Material Engineering & Technology Lab
	Manufacturing Processes Lab
Minor Elec	tive Course-III (Robotics)
	Mobile Robots
	Mobile Robots Lab
Minor Elective	Course-III (Electric Vehicles)
	Battery Management System
	Battery Management System Lab

Minor Elective Course-III (Computer Science Engineering)								
	Database Management System							
	Database Management System Lab							

Faculty of Engineering and Technology								
Name of the Department	Mechanical Engineering							
Name of the Program	B. Tech.							
Course Code								
Course Title	Strength of Materials							
Academic Year	П							
Semester	IV							
Number of Credits	3							
Course Prerequisite	NIL							
Course Synopsis	Strength of Materials (also known as Mechanics of Materials) is the study of the internal effect of external forces applied to structural member. Stress, strain, deformation deflection, torsion, flexure, shear diagram, and moment diagram are some of the topics covered by this subject.							

Course Outcomes:

At the end of the course, students will be able to:

CO1	To suggest suitable material with the help of relationship between elastic constants and
	thermal consideration of a material.
CO2	To evaluate the strength of materials subjected to various internal forces such as
	compression, tension, shear and bending loads.
CO3	To apply the basic concepts in designing the machine elements subjected to torsion
	and axial loading condition.
CO4	To apply the concept of Principal stress and strain in order to prevent the failures in
	materials subjected to two-dimensional loading condition.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes:

COs	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	РО 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	2	2	-	-	-	-	-	-	-	3	3	2	2
CO2	3	3	3	3	1	-	-	-	-	-	-	3	3	3	3
CO3	3	3	3	3	3	-	-	-	-	-	-	2	3	3	3
CO4	3	3	3	3	2	-	-	-	-	-	-	2	3	3	3
Average	3	2.75	2.75	2.75	1.5	-	-	-	-	-	-	2.5	3	2.75	2.75

	ontent:				
L (H	ours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week 3	
	3	0	0		
U nit	Content	& Competencies			
	Introduction Define stress Understand t Explain the n Stress-Strain Interpret stree Analyze the Determine th strain curves Factor of Sat Define and c Analyze the and safety (C Elongation o Analyze the sections (C3 Calculate the Saint-Venan Understand materials (C2 Analyze the load (C3). Compound H Analyze the Calculate the Temperature Understand (C2). Analyze the Calculate the State of Sim Define and a Understand	the basic concepts and relationship between standing page 2015 and	ss and Strain: ext of mechanics of mater principles related to stress ress and strain using Hoo ferrous and non-ferrous m inder different stress-strai- strength, and ultimate s afety in engineering desig ctor of safety in ensuring ing bars of circular and g bars due to axial loading on the elongation of taper iple and its application a body away from the po l bars subjected to axial load compound bars (C3). rature stresses and their subjected to temperature of n different materials and ple shear in materials (C2 ationships in simple shear	s and strain (C2). ke's law (C2). naterials (C3). in conditions (C3). trength from stress gn (C2). g structural integri d rectangular cro g (C3). ring bars (C3). n in mechanics int of application bading (C3). effects on materia changes (C3). configurations (C3 2).	

	Define and calculate the elastic constants (Young's modulus, shear modulus, and
	Poisson's ratio) (C2).
	Understand the relationships between the elastic constants (C2).
	Analyze the implications of elastic constants on material behavior (C3).
	Compound Stresses (C2, C3):
	State of Stress at a Point:
	Define and analyze the state of stress at a point in a material (C2).
	Understand the different stress components and their significance (C2).
	General Two-Dimensional Stress System:
	Analyze the behavior of materials under general two-dimensional stress systems
	(C3).
	Calculate the normal and shear stresses on arbitrary planes (C3).
	Principal Stresses and Principal Planes:
	Define principal stresses and principal planes (C2).
	Determine the principal stresses and their orientation (C3).
	Analyze the significance of principal stresses in material failure (C3).
	Mohr's Circle of Stresses:
	Understand the concept and construction of Mohr's circle of stresses (C2).
	Determine the principal stresses and maximum shear stresses using Mohr's
	circle (C3).
2	Shear Force and Bending Moment in Beams (C2, C3):
	Introduction to Types of Beams, Supports, and Loadings:
	Understand the different types of beams, including simply supported, cantilever,
	and continuous beams (C2).
	Identify and describe the various types of supports and their effects on beam
	behavior (C2).
	Recognize different loadings on beams, such as point loads, uniformly
	distributed loads, and uniformly varying loads (C2).
	Definition of Bending Moment and Shear Force:
	Define and understand the concepts of bending moment and shear force in
	beams (C2).
	Explain the sign conventions used for bending moment and shear force (C2).
	Understand the relationship between load intensity, bending moment, and shear
	force in beams (C2).
	Shear Force and Bending Moment Diagrams:
	Analyze and calculate the shear force and bending moment at different points
	along a beam subjected to point loads, uniformly distributed loads, uniformly
	varying loads, couples, and their combinations (C3).
	Construct shear force and bending moment diagrams for statically determinate
	beams (C3).
	Interpret the diagrams to determine critical points, maximum and minimum
	values, and regions of positive and negative bending moments and shear forces
	(C3).
1	
	Deflection of Beams: Understand the concept of deflection in beams (C2).

	Apply the double integration method and Macaulay's method to calculate the			
	deflection of beams (C3).			
	Analyze different loading conditions and support conditions to determine deflection of beams (C3). Bending and Shear Stresses in Beams:			
	Introduce the concept of pure bending and its assumptions (C2).			
	Derive the bending equation and understand the relationship between bendi moment, flexural rigidity, and curvature (C2).			
	Define the modulus of rupture and section modulus and their significance			
	analyzing beam strength (C2).			
	Calculate the bending stress distribution in beams of circular, rectangular, 'I,'			
	and 'T' sections (C3).			
	Determine the shear stress distribution in beams and analyze its effects on beam			
	behavior (C3).			
3	Torsion in Circular Shaft (C2, C3):			
5	Introduction to Torsion:			
	Understand the concept of torsion in circular shafts and its significance in			
	engineering applications (C2).			
	Recognize the assumptions made in the analysis of pure torsion (C2).			
	Derivation of Torsion Equation for Circular Shafts:			
	Derive the torsion equation for circular shafts based on the assumptions of pure			
	torsion (C3).			
	Understand the relationship between applied torque, torsional rigidity, polar			
	modulus, and the resulting shear stress distribution (C3).			
	Power Transmitted by a Shaft:			
	Calculate the power transmitted by a shaft subjected to torsional loading (C3).			
	Understand the relationship between torque, rotational speed, and power			
	transmission (C2).			
	Combined Bending and Torsion:			
	Analyze the combined effects of bending and torsion on a shaft (C3).			
	Understand the interaction between bending and torsional stresses and their			
	influence on the failure of the shaft (C2).			
	Columns and Struts (C2, C3):			
	Introduction to Columns and Struts:			
	Define columns and struts and their importance in structural engineering (C2).			
	Differentiate between short and long columns based on their slenderness ratio			
	(C2).			
	Euler's Theory for Columns:			
	Understand the assumptions and principles behind Euler's theory for column			
	buckling (C2).			
	Derive the Euler's buckling load equation for columns with different end			
	conditions (C3).			
	Recognize the limitations of Euler's theory in predicting column behavior (C2).			
	Rankine-Gordon's Formula for Columns:			
	Kaikine-Goldon's Formula for Columns.			

	Introduce Rankine-Gordon's formula for analyzing column stability (C2).
	Apply the formula to calculate the critical buckling load of columns (C3).
4	Thin and Thick Cylinders (C2, C3):
4	Introduction to Cylinders:
	Understand the concept of cylinders and their applications (C2).
	Differentiate between thin and thick cylinders based on their dimensions (C2).
	Thin Cylinders subjected to Internal Pressure:
	Analyze thin cylinders under internal pressure and calculate hoop stresses, longitudinal stresses, and changes in volume (C3).
	Understand the assumptions and limitations of thin cylinder analysis (C2).
	Thick Cylinders subjected to Internal and External Pressure:
	Analyze thick cylinders subjected to both internal and external pressure using
	Lame's equation (C3).
	Determine the radial and hoop stress distribution in thick cylinders (C3).
	Understand the relationship between internal and external pressure and stress
	distribution (C2).
	Theories of Failure (C2, C3):
	Introduction to Theories of Failure:
	Introduce the theories of failure and their significance in material failure
	analysis (C2).
	Maximum Principal Stress Theory (Rankine's Theory):
	Explain Rankine's theory of failure based on the maximum principal stress
	criterion (C2).
	Apply the theory to analyze materials under different loading conditions (C3).
	Maximum Shearing Stress Theory (Tresca's Theory):
	Explain Tresca's theory of failure based on the maximum shearing stress
	criterion (C2).
	Apply the theory to analyze materials under different loading conditions (C3).
	Strain Energy Theory (Beltrami and Haigh):
	Explain the strain energy theory of failure and its relationship to material failure
	(C2).
	Discuss the application of the theory in analyzing material behavior (C3).
	Maximum Strain Theory (St. Venant's Theory):
	Explain St. Venant's theory of failure based on the maximum strain criterion
	(C2).
	Apply the theory to analyze materials under different loading conditions (C3).

Teaching - Learning Strategies	Contact Hours
Lecture	25
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	5

Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination (OSPE)	University Examination
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz				
VIVA				
Assignment / Presentation	✓	~	~	✓
Unit test				
Practical Log Book/ Record Book				
Mid Semester Examination 1	✓	✓	✓	√
Mid Semester Examination 2	✓	~	✓	✓

University Examin	ation			✓	✓	✓	 ✓
Feedback Process	;	1. 2.	Student's Fee Course Exit S				
 Regular fee Feedback b 	is taken through various s edback through Mentor Me etween the semester throu t Survey will be taken at t	ente 1gh g	e system. google forms.				
References:	(List of reference books))					
	 i) Rattan S.S. (2011) "Stre Limited, ISBN: 97800710" ii) B.S. Basavarajaiah, P. Press Publication India, 3r 	7256 . Ma	54, 007107256X ahadevappa (20	(. 10) "Str	ength of	Material	

			F	Facul	lty of	f Eng	ginee	ring	and 7	Fechr	nolog	У			
Name of th	ie De	parti	ment			Ν	Iecha	nical	Engin	eering	5				
Name of th	ie Pr	ograi	m			B	. Tec	h.							
Course Co	de														
Course Tit	le					N	later	ial Er	nginee	ering	& Tec	hnolo	ogy		
Academic	Year	,				I	[
Semester						Г	V								
Number of	f Cre	dits				3									
Course Pro	erequ	isite				N	IIL								
Course Syn Course Ou At the end	ıtcom	nes:	rse str	udent	s will	d cu fu cu st d d st au ir	iscipl reate undan ompo tuden emon escrip tuden dditio	ines o a MS' nental sites. ts, the stratio ptions. ts to co onal in ful th	of cher F curr S of co Design cours ons an . The boserv	nistry iculum eramic ned to se com d long basic 1 e, exp ation, a	, phys n. The cs, gla o appea bines g-term philoso erime	ics, ar cours ss, me al to a hands stude ophy o nt, rec	the acac ad engir se cover etals, po a broad r s-on act ent proje of the co cord, que a creativ	neering the sthe lymers, range of ivities, ivities, ect ourse is estion, s	, and f for
CO1	Unc	lersta	nd ho	ow ma	ateria	ls are	form	ed an	d their	r class	ificati	on ba	sed on a	tomic	
	arra	ngem	ient.												
CO2	Des	cribe	the n	necha	inical	beha	viour	of me	etallic	system	ms and	d its ii	nportan	ice.	
CO3	Eva	luate	syste	m for	r fatig	gue fa	ilures								
CO4	Gai	n kno	wled	ge on	diffe	erent o	classe	s of n	nateria	als and	l their	appli	cations.		
Mapping o Outcomes:		urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (]	POs) a	& Pro	ogram S	Specific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
	1	4	3	+				o	7		11				
CO1	3	-	1	-	1	1	2	-	-	1	-	2	3	3	2

CO3	3	2	2	3	2	-	2	-	-	-	-	2	3	3	3
CO4	3	2	2	2	1	2	2	-	-	1	-	3	2	2	1
Average	3	2	1.75	2.5	1.75	1.5	2	-	-	0.5	-	2.25	2.75	2.75	2
	1				1		1								
Course (Cont	ent:													
L (I	Hours	/Week	x)		T (E	lours/	Week)	P (Hours	/Week))	Tota	Hour/	Week
3					0			0					3		
Unit			Conte	ent &	c Con	ipete	ncies	5							
1		Intr	oduct	ion to	Mat	erials	Scie	nce (C	21):						
		Prin	nary a	and S	econd	lary I	Bondi	ng in	Mater	ials:					
		Und	lersta	nd the	e con	cepts	of pr	imary	and s	econd	ary bo	onding	in mat	erials (C	C1).
								• -	-	-	•	-	(e.g., io	nic, cov	valent)
										nder V	Vaals)	(C1).			
		-	stallir			-				1		1		$1_{-}(01)$	
					-			•			-			ls (C1). rystalli	
		-	orphou				-	in an	u shu	ciurai	chara	ciciisi		1 ystaini	
			-				,	line N	/lateria	als:					
			-	•		•	•				ycrys	talline	mater	ials bas	ed on
		thei	r aton	nic ar	range	ment	(C1)).							
						-	-	in bou	ındari	es in p	olycr	ystalli	ne mate	erials (C	21).
		-	ce La					11 •		1 /		$\langle \mathbf{C} 1 \rangle$			
			-						•	l struc			C(1)		
					-		-	-				ttice ((vstalle	ography	(\mathbf{C}^{1})	
			sed Pa					i inch	Sigini	icane		ystan	graphy	(C1).	
								packe	d stru	ctures	in cry	stallir	ne mate	rials (C	1).
		Exp	lain 1	the a	rrang	emen	t of	atom	s in c	close-p	packed	i plan	es and	the st	acking
		sequ	uence	(C1)	•										
			ncipal			•									
			•				-	-			•			cluding	•
					(RC	C), fa	ace-co	entere	a cub	1C (FC	.C), a	na hey	kagonal	close-p	backed
			CP) (C cuss fl		cking	r faul	ts and	l their	imna	ct on 1	materi	al nro	perties	(\mathbf{C}^{1})	
			ssifica		-	-			mpa		inateri	ur pro	Perties	(01).	
									rystal	defec	ts, in	cludin	g point	defect	s, line
									-			fects (

	Explain the difference between edge and screw dislocations (C1).
	Effect of Imperfections on Material Properties:
	Analyze the effect of imperfections (defects) on material properties, such as
	mechanical, electrical, and thermal properties (C1).
	Numerical Problems on Crystallography:
	Solve numerical problems related to crystallography, including calculations
	involving Miller indices and crystal structures (C2).
2	Basics of Solidification Mechanism (C1):
	Cooling Curve of Pure Metal and Alloy:
	Understand the concept of the cooling curve and its significance in solidification
	(C1).
	Differentiate between the cooling curve of a pure metal and an alloy (C1).
	Phase and Phase Diagram:
	Define phase and explain the concept of phase diagrams (C1).
	Interpret the different regions, phases, and phase boundaries in a phase diagram
	(C1).
	Gibbs's Phase Rule:
	Explain Gibbs's phase rule and its application in phase diagrams (C1).
	Interpretation of Mass Fractions using Lever's Rule:
	Understand Lever's rule and its application in determining mass fractions in
	phase diagrams (C1).
	Binary Isomorphous System:
	Explain the binary isomorphous system and its characteristic features (C1).
	Analyze and interpret phase diagrams of binary isomorphous systems (C1).
	Binary Eutectic Alloy System (Lead-Tin System):
	Describe the binary eutectic alloy system using the Lead-Tin system as an
	example (C1).
	Explain the eutectic reaction and the microstructural features in the Lead-Tin
	system (C1).
	Binary Peritectic Alloy System (Iron-Nickel System):
	Describe the binary peritectic alloy system using the Iron-Nickel system as an
	example (C1).
	Explain the peritectic reaction and the microstructural features in the Iron-
	Nickel system (C1).
	Invariant Reactions:
	Understand the concept of invariant reactions in phase diagrams and their
	significance (C1).
	-
	Iron-Iron Carbide Phase Diagram:
	Interpret the iron-iron carbide (Fe-Fe3C) phase diagram and understand the $r_{\text{bases and resolutions present}}(C1)$
	phases and reactions present (C1).

	Slow Cooling of Huno and Hunor Eutoatoid Steels:
	Slow Cooling of Hypo and Hyper Eutectoid Steels:
	Analyze the slow cooling process of hypo and hyper eutectoid steels using the iron earlier phase diagram $(C2)$
	iron-carbon phase diagram (C2).
	Temperature-Time-Transformation (TTT) and Continuous Cooling
	Transformation (CCT) Diagrams:
	Understand the concepts of TTT and CCT diagrams and their application in heat
	treatment processes (C2).
	Effect of Alloying Elements in Steel:
	Explain the effect of alloying elements on the microstructure and properties of steel (C1).
	Types of Stainless Steel and Cast Iron:
	Identify and describe different types of stainless steel and cast iron based on
	their composition and properties (C1).
3	Heat Treatment (C2):
	Annealing and Its Types:
	Define annealing and its purpose in heat treatment (C1).
	Explain the different types of annealing, such as full annealing, process
	annealing, and stress relief annealing (C2).
	Understand the effects of annealing on the microstructure and properties of
	materials (C2).
	Normalizing:
	Describe the process of normalizing and its purpose in heat treatment (C1).
	Analyze the microstructural changes that occur during normalizing (C2).
	Hardening and Tempering:
	Define hardening and tempering and their significance in heat treatment (C1).
	Explain the process of hardening and the formation of martensite (C2).
	Describe the tempering process and its effect on the mechanical properties of
	materials (C2).
	Aus-tempering and Mar-tempering:
	Differentiate between aus-tempering and mar-tempering processes (C2).
	Understand the microstructural changes and resulting properties in materials
	after aus-tempering and mar-tempering (C2).
	Microstructure Observation:
	Explain the methods used for microstructure observation, such as optical
	microscopy and electron microscopy (C2).
	Interpret and analyze the microstructural features observed after heat treatment
	processes (C2).
	Surface Heat Treatment Processes:
	Describe different surface heat treatment processes, including carburizing,
	nitriding, cyaniding, carbonitriding, flame hardening, and induction hardening

	(C2).
	Understand the purpose and benefits of each surface heat treatment process
	(C2).
	Composites - Fiber Reinforced, Metal Matrix, Ceramic Matrix:
	Define composites and their classification based on the matrix material (C1).
	Explain the properties and applications of fiber-reinforced composites, metal
	matrix composites, and ceramic matrix composites (C2).
	Ceramics - Alumina, Zirconia, Silicon Carbide, Sialons, Reaction Bonded
	Silicon Nitride (RBSN):
	Describe the properties and applications of various ceramics, including alumina,
	zirconia, silicon carbide, sialons, and reaction-bonded silicon nitride (RBSN)
	(C2).
	Glasses - Properties and Applications:
	Explain the properties and applications of glasses (C1).
	Discuss the unique characteristics of glasses and their suitability for different
	applications (C2).
	Magnetic Materials:
	Define magnetic materials and their properties (C1).
	Explain the applications and significance of magnetic materials in various
	industries (C2).
4	Mechanical Properties of Materials (C3):
-	Strengthening Mechanism:
	Explain the various strengthening mechanisms used to enhance the mechanical
	properties of materials, such as solid solution strengthening, precipitation
	hardening, and grain refinement (C3).
	Understand how each strengthening mechanism affects the strength, hardness,
	and ductility of materials (C4).
	Plastic Deformation of Single and Polycrystalline Materials:
	Describe the process of plastic deformation in single-crystal and polycrystalline
	materials (C2).
	Discuss the role of slip and twinning in plastic deformation and their effects on
	the mechanical properties of materials (C3).
	Stress-Strain Curves:
	Interpret stress-strain curves for different ferrous and non-ferrous metals (C3).
	Analyze the behavior of materials under tension, including the elastic region,
	yield point, plastic deformation, and ultimate tensile strength (C4).
	Engineering Stress-Strain and True Stress-Strain Relations:
	Define engineering stress and strain and their relationship (C1).
1	Explain the concept of true stress and true strain and their significance in
	Explain the concept of true stress and true strain and their significance in material deformation (C3).

	Solve problems involving stress-strain relations and material properties (C4).
	Tensile Test of Ductile Material:
	Describe the tensile test procedure for ductile materials (C2).
	Evaluate mechanical properties such as yield strength, ultimate tensile strength,
	and elongation using tensile test data (C3).
	Hardness Measurement Tests:
	Explain different hardness measurement techniques, such as Rockwell, Brinell,
	and Vickers hardness tests (C2).
	Discuss the principles and applications of hardness testing (C3).
	Fracture of Metals:
	Differentiate between ductile and brittle fracture modes (C2).
	Explain the factors influencing fracture behavior and the mechanisms of crack
	propagation (C3).
	Fatigue:
	Define fatigue and discuss its significance in material failure (C2).
	Explain the concept of the endurance limit for ferrous and non-ferrous metals
	(C3).
	Describe fatigue testing procedures and analyze fatigue data (C4).
	Creep and Stress Rupture:
	Define creep and explain its mechanism in materials (C2).
	Describe the stages of creep and the factors affecting creep deformation (C3).
	Discuss stress rupture and its relationship to creep (C3).
	Explain the creep test procedure and analyze creep data (C4).
	SEM and XRD:
	Explain the principles and applications of scanning electron microscopy (SEM)
	and X-ray diffraction (XRD) in materials characterization (C3).
	Understand how SEM and XRD techniques are used to analyze microstructures,
	crystallographic information, and material defects (C4).
L	

Teaching - Learning Strategies	Contact Hours
Lecture	26
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	2

Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz				
VIVA				
Assignment / Presentation	~	✓	1	✓
Unit test				
Practical Log Book/ Record Book				
Mid Semester Examination 1	~	✓	~	✓
Mid Semester Examination 2	✓	✓	✓	✓
University Examination	✓	 ✓ 	 ✓ 	\checkmark
Feedback Process	1. Stu	ident's Fe	edback	

|--|

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

i) V. Raghavan. Materials Science and Engineering, PHI; Fifth edition (30 July 2011), ASIN: B00K7YGKWQ

ii) William D. Callister, David G. Rethwisch, Fundamentals Of Materials Science And Engineering: An Integrated Approach, John Wiley & Sons; 4th Edition edition (8 December 2011), ISBN: 1118061608

iii) William F. Smith and Javad Hashemi (2004), Foundations of materials science and engineering 5th Edition, McGraw Hill, 2009, ISBN: 9780073529240

	Faculty of Engineering and Technology						
Name of	Department Mechanical Engineering						
Name of	Program B. Tech.						
Course C	e						
Course T	e Manufacturing Processes						
Academi	ear II						
Semester	IV						
Number	Credits 3						
Course P	requisite NIL						
Course SynopsisThis syllabus emphasizes the importance manufactur sciences in the day-to-day life, and to study the ba manufacturing processes and tools used, It will offer detai understanding of metal cutting, metrology, metal form operations, machine tool, plastic processing and ot important things which are very needful to a mechani engineer. The fundamental idea how a design is turned int product. This form is most likely predetermined, calculat with a certain physical geometry. Usually, this geometry certain tolerances that it must meet in order to be conside acceptable. A tolerance outlines the geometric accuracy to must be achieved in the manufacturing process.Course Outcomes:							
	f the course, students will be able to:						
CO1	To understand the basics and theory of metal cutting.						
CO2	To study the metrology and measurement methods used in manufacturing processes.						
CO3	Explain the various metal forming and sheet metal operations.						
CO4	Explain in detail about machine tools.						
Mapping Outcome	Course Outcomes (COs) to Program Outcomes (POs) & Program Specific						
COs	PO P						

COs	PO	PO	РО	PO	PO	PO	РО	РО	РО	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	2	2	2	2	-	-	-	-	-	3	2	3	1
CO2	3	3	2	2	2	2	-	-	-	-	-	1	1	3	3
CO3	3	2	3	3	3	2	-	-	-	-	1	1	-	3	3

CO4	3	2	3	3	3	2	-	-	-	-	3	1	-	3	2
Average	3	2.25	2.25 2.5 2.5 2.5 2 1 1.5 0.75 3 2.25											2.25	
Course (Cont	ent:													
L (Hours/Week) T (Hours/Week) T otal Hour											Hour/	Week			
	3 0													3	
Unit			Cont	ent &	c Con	npete	encies	I							
1		Def of g Class appl mar Met Des (C1) Ider Disc (C2) Exp angl Diff Disc life cons Exp the : Disc cutt Exp wor Disc cutt Exp tous tous tous tous	ine m oods ssify lication ufact al Cu cribe). ntify of cuss f lain f cuss f equa sump lain t mach cuss ing of lain kpiec cuss t cribe	anufa (C1). mar ons, curing the b different the the metal iate b he metal iate b he metal iate b he model ation, tion (he coo ining the in perati the the s, and	acturin nufact such (C2) and T asic t ent ty echan ecoret: cuttin etwee etal c and C3). ncept proce mport ons ((empe- lity () ctors i types l wean	ng pr uring as Tool I ool g pes o nics o ical a ng (C en ort utting the s of c eass (C cance C2). rature C2). influe of to	cocess g process castin Life ((eome f chip of chi and ex 2). thogo g theo rela cuttin C2). of c e pro encing col m stance	es and occesse ag, fo C3): try an os and p form abs and p form al an ories, i tionsh g spee cutting file in g tool ateria e (C2)	d expla orming d nom expla matior nental d obli nclud ip be ed, fee g fluic n cutt life ar ls anc	ain the used g, ma hencla in the h and meth que m ing th etween d, and ds, co ing a hd the l thein	eir sig on t chinir ture fo ir chan factor ods u netal c e Mer n velo l depth olants nd its tailor	mifica their ng, jc or sing racteri rs affe sed to utting chant ocity, n of cu s, and s impa equat	ation (C nce in the charactering, gle-poin stics (C ecting cl o determ (C2). s circle, forces, at and the lubricatering act on ion of the , includ	he proc teristics and a t cuttin 2). hip for hip for ants the ants in tool life ing ha	s and dditive g tools mation e shear r's tool power ects on metal fe and (C3). rdness,
2		-		vity (C		ds of	Meas	urem	ents (C	~ 2)·					
4		IVICI	10108	y. 50	inuar	45 01	wieas	urcill		<i></i> ,					

Explain the importance of standards in metrology and their role in ensuring
accurate measurements (C2).
Discuss the different types of measurement standards, such as primary
standards, secondary standards, and reference standards (C2).
Linear and Angular Instruments (C2):
Describe the working principles and applications of linear measuring
instruments, such as vernier calipers, micrometers, and height gauges (C2).
Explain the working principles and applications of angular measuring
instruments, including protractors, sine bars, and angle gauges (C2).
Discuss the use of slip gauges for precise measurement and calibration (C2).
Comparators (Mechanical, Electrical, Optical) (C2):
Explain the working principles and applications of mechanical comparators,
such as dial indicators and mechanical amplifiers (C2).
Discuss the working principles and applications of electrical comparators,
including LVDT (Linear Variable Differential Transformer) and digital
comparators (C2).
Describe the working principles and applications of optical comparators, such as
profile projectors and shadowgraphs (C2).
Screw Thread Measurements and Limit Gauging (C2):
Explain the methods used for measuring screw threads, including the three-wire
method and thread micrometers (C2).
Discuss the concept of limit gauging and its application in assessing the
acceptability of screw threads (C2).
Gauge Design and Surface Finish Measurements (C3):
Explain the principles and considerations involved in the design of gauges for
various applications (C2).
Discuss surface finish and its importance in determining the quality of a surface
(C2).
Describe the methods and instruments used for measuring surface finish,
including roughness testers and profilometers (C2).
Explain the concepts of micro and macro deviation in surface finish evaluation
(C2).
Discuss the factors that influence surface finish, such as cutting parameters, tool
wear, and material properties (C2).
Limits, Fits, and Tolerances (C2):
Explain the concept of limits, fits, and tolerances in dimensional control (C2).
Describe the different types of limits, including unilateral and bilateral limits
(C2).
Discuss the various types of fits, such as clearance fit, interference fit, and
transition fit (C2).
transition in (C2).

	Explain the hole basis system and shaft basis system for fits and tolerances (C2).
3	Forming Processes: Basic Principle of Hot & Cold Working (C2):
	Explain the basic principles of hot working and cold working in metal forming
	processes (C2).
	Discuss the temperature ranges and effects of hot and cold working on material
	properties (C2).
	Hot & Cold Working Processes (C2):
	Describe the different hot working processes, such as hot rolling, hot forging,
	and hot extrusion, and their applications (C2).
	Explain the various cold working processes, including cold rolling, cold forging,
	and cold extrusion, and their advantages (C2).
	Classifications of Forming Processes (C2):
	Discuss the classifications of forming processes based on temperature,
	deformation rate, and type of material (C2).
	Explain the differences between bulk forming processes and sheet metal
	forming processes (C2).
	Bulk Forming Processes: Rolling, Extrusion, Forging (C2):
	Explain the principles and applications of the rolling process, including hot
	rolling and cold rolling (C2).
	Describe the extrusion process and its variations, such as direct extrusion and
	indirect extrusion (C2).
	Discuss the principles of forging processes, including open die forging and
	closed die forging (C2).
	Sheet Metal Forming Processes (C2):
	Introduce the basics of sheet metal working, including the selection of sheet material, thickness, and temperature for forming (C2).
	Explain the different sheet metal forming operations, such as shearing, cutting,
	punching, blanking, notching, lancing, bending, beading, embossing, drawing,
	deep drawing, and spinning (C2).
	Dieless Forming Processes - Incremental Sheet Forming (ISF) (C2):
	Describe the incremental sheet forming (ISF) process and its variations, such as
	single-point incremental forming and two-point incremental forming (C2).
	Discuss the process parameters involved in ISF, such as tool path strategies and
	feed rate (C2).
	Explain the working principle and applications of ISF in sheet metal forming
	(C2).
4	Introduction to Basic Machine Tools (C1):
	Provide an overview of basic machine tools and their importance in
	manufacturing processes (C1).
	Explain the role of machine tools in shaping, cutting, and machining various

materials (C1).
Constructional Features of Machine Tools (C1):
Describe the common constructional features of machine tools, such as beds,
carriages, spindles, tool posts, and worktables (C1).
Discuss the components and mechanisms that enable the movement and control
of machine tools (C1).
Specialization and Operations of Machine Tools (C1):
Discuss the specialization of machine tools based on their specific functions,
such as lathes for cylindrical turning, shapers for shaping surfaces, planners for
flat surfaces, drilling machines for creating holes, and milling machines for
complex operations (C1).
Explain the operations performed by each machine tool, including turning,
facing, drilling, milling, shaping, and planning (C1).
Devices and Accessories of Machine Tools (C1):
Introduce the various devices and accessories used with machine tools, such as
chucks, collets, tool holders, cutting tools, and work holding fixtures (C1).
Explain the purpose and function of these devices in enhancing the performance
and versatility of machine tools (C1).
Indexing in Milling Operation (C2):
Explain the concept of indexing in milling operations and its significance in
creating precise and repeatable workpiece rotations (C2).
Discuss the indexing methods and devices used in milling machines, such as
indexing heads, rotary tables, and dividing heads (C2).
Working Principle of Machine Tools (C1):
Describe the working principles of lathe, milling machine, drilling machine,
shaper, and planer (C1).
Explain how each machine tool performs its specific operations and the role of
feed, spindle speed, depth of cut, and cutting speed in achieving desired results
(C1).
Calculation of Machining Time (C2):
Discuss the factors involved in calculating machining time, including cutting speed food rate donth of out and the number of $passes$ (C2)
speed, feed rate, depth of cut, and the number of passes (C2).
Explain the formulas and methods used to estimate machining time for different $(C2)$
machining operations (C2).
Current Industry Trends (C3):
Provide an overview of current trends and advancements in machine tool
technology, such as computer numerical control (CNC), automation, integration
of sensors and actuators, and Industry 4.0 concepts (C3).
Discuss the impact of these trends on productivity, efficiency, and the overall
manufacturing process (C3).

Teaching - Learning Strategies	Contact Hours
Lecture	26
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	2
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Mapping of Assessment with COs

Nature of Assess	ment		CO1	CO2	CO3	CO4			
Quiz									
VIVA									
Assignment / Pres	entation		✓	✓	✓	✓			
Unit test									
Practical Log Boo	k/ Record Book								
Mid Semester Exa	amination 1		 ✓ 	✓	✓	 ✓ 			
Mid Semester Exa	amination 2		 ✓ 	✓	✓	 ✓ 			
University Exami	nation		 ✓ 	✓	✓	✓			
Feedback Proces	s	1. Student's Fe	edback						
		2. Course Exit	Course Exit Survey						
Students Feedbac	k is taken through various	steps							
	edback through Mentor M	-							
2. Feedback	between the semester throu	igh google forms.							
3. Course Ex	it Survey will be taken at t	he end of semeste	r.						
References: (List of reference books)									
	i) P N Rao, Vol. 1, Found		elding, M	cGraw H	ill, 5th Ed	ition,			
	ISBN-13: 978-93-5316-05		Ducate		Cana I -	:			
ii) Workshop Technology (Manufacturing Process) – S K Garg, Laxmi Publications; Fourth Edition (2018), ISBN-10: 8131806979									
	Fublications; Fourth Edi	$\frac{1000}{2018}, 15BN$	N-10: 81.	18009/	7				

]	Facul	lty o	f Eng	ginee	ering	and [Fechi	nolog	у						
Name of the Department								Mechanical Engineering										
Name of the Program							B. Tec	h.										
Course Co	de																	
Course Tit	tle					S	team	Pow	er Ge	nerat	ion							
Academic	Year	•				I	[
Semester						Г	V											
Number of	f Cre	dits				3												
Course Pr	ereq	uisite	:			E	ngine	ering	Ther	mody	namics	5						
Course Sy	se Synopsis To teach students about the working of various generation units and steam cycles. To introduce stu steam generators, combustion and firing methods in make the fullest use of thermal power potentialitie country. To enable students, understand function boilers, turbines and pumps used in power generation.									uce stud ods in c ntialities function	ents to order to of the							
Course Ou	itcon	nes:										•	C					
At the end	of the	e cou	rse, s	tuden	ts wil	ll be a	ble to):										
CO1	Des	sign o	ptim	izatio	n and	work	king c	f boil	ers an	d hea	ters.							
CO2		ow a dicabi		the	kind	of t	f turbines being used in various industries and their											
CO3											nits ar ments.		oose oi	ne that	meets			
CO4	Uno	dersta	nd th	e use	of oi	l burr	ners, f	àns, a	ind ig	niters.								
Mapping o		urse	Outo	omes	(CO	s) to	Prog	ram (Outco	mes (POs)	& Pro	gram S	Specific	:			
Outcomes COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO 1	PSO2	PSO3			
CO1	3	2	3	2	1	1	2	-	-	-	1	2	2	3	1			
CO2	3	2	3	3	2	1	1	_	-	_	1	2	1	3	3			
CO3	3	2	2	2	2	2	2	-	-	-	3	3	-	3	3			
CO4	3	1	2	2	1	1	1	-	-	-	1	3	-	3	2			
Average	3	1.75	2.5	2.25	1.5	1.25	1.5	-	-	-	1.5	2.5	0.75	3	2.25			
Course C	Cont	ent:		L	1	1	1	1	1	I	I	1		1	1			
L (I	Hours	/Week	;)		T (F	lours/	Week)	P (Hours	/Week)		Tota	Hour/	Week			

	3	0	0	3
Unit	Content	& Competencies		
	Content Classification Provide an o such as fuel of Describe diff boilers, pack Arrangement Explain the a combustion of Discuss the f safe boiler op Fundamental Discuss the f such as heat integrity (C2 Explain the requirements Location of V Describe the boiler, such	& Competencies an and Types of Boile verview of boilers a type, construction, and fferent types of bo age boilers, and elec ts of Main Boiler (C arrangement of major chamber, heat exchand layout and positioning peration (C1). Is of Boiler Design (C fundamental principl transfer, combustion). a factors that infles, fuel characteristics Various Pressure Par e placement and pon a s the steam of , and de-superheaters	ers (C1): nd their classification base nd application (C1). oilers including fire-tube tric boilers (C1). 1): or components in a boiler so nger, flue gas path, and boi ng of these components to C2): es and considerations invo n efficiency, thermal insu uence the design proce , and safety regulations (C ts (C1): sitioning of different pre frum, water walls, sup	ed on various criteria boilers, water-tube system, including the iler accessories (C1). o ensure efficient and lved in boiler design, lation, and structural ess, including load 2). ssure parts within a erheaters, reheaters,
	generation, a Boiler Circul Explain the controlled cir Discuss the phenomena, circulation (C Construction Provide an o reheaters, and Discuss the transfer effic De-superhea Explain the o Discuss their steam (C1).	nd overall performant lation Theory (C2): principles of boil rculation, and forced factors that affec nucleate and film bo C2). Details of Superheat overview of the con- d economizers in a b purpose and funct iency and maximizin- ters (C1): concept and operation r role in controlling	nce (C1). er circulation, including circulation (C2). t circulation, such as w biling, and the role of pum ters, Reheaters, and Econo struction and design feature	natural circulation, water walls, boiling ps and fans in forced omizers (C2): ures of superheaters, s in enhancing heat oiler system (C1). rature of superheated

	Describe the function and construction of the boiler drum and its internals, including steam separators, baffle plates, and steam outlets (C2).
	Explain the separation process of steam from water and the importance of proper steam quality in boiler operation (C2).
2	Water Supply System (C1):
	Explain the different types of water used in a water supply system, including soft water, circulated water, cooling water, and demineralized (D.M.) water (C1).
	Discuss the characteristics and purposes of each type of water in industrial applications (C1).
	Steam Cycle Theory (C2):
	Introduce the concept of steam cycles in power plants, including the Carnot cycle and Rankine cycle (C2).
	Discuss the specific application of the Rankine cycle in a 500/210 MW power unit and its steam properties (C2).
	Steam Turbines (C2):
	Provide an overview of steam turbines and their classification based on various
	criteria such as steam flow, expansion, and working principles (C2).
	Discuss the metallurgical considerations in turbine design and construction to withstand high temperatures and pressures (C2).
	Description of Main Components of Steam Turbines (C3):
	Describe the main components of steam turbines, including the turbine casing,
	rotor, blades, steam admission valves, couplings, and bearings (C3).
	Explain the functions and working principles of each component in converting
	steam energy into mechanical work (C3).
	Steam Condensation and Condensers (C2):
	Discuss the different modes of steam condensation, including film-wise and drop-wise condensation (C2).
	Explain the concepts of direct and indirect condensation and the creation of
	vacuum in steam condensers (C2).
3	Classification of Pumps (C1):
	Discuss the classification of pumps based on their operating principles,
	including centrifugal pumps and positive displacement pumps (C1).
	Explain the differences between these two types of pumps in terms of their
	working principles and applications (C1).
	Boiler Feed Pump (C2):
	Describe the function of a Boiler Feed Pump (BFP) in a steam power plant and
	its importance in supplying water to the boiler (C2).
	Discuss the constructional details of a Boiler Feed Pump, including its
	components and working principles (C2).

	Circulating Water System (C1):
	Explain the concept of a circulating water system in industrial applications,
	including open and closed systems (C1).
	Discuss the purpose and components of a circulating water system, such as CW
	pumps, cooling towers, and CT pumps (C1).
	Cooling Towers (C1):
	Describe the working principles of cooling towers in the process of heat
	dissipation and temperature reduction (C1).
	Discuss the types and constructional details of cooling towers used in industrial
	applications (C1).
	CT Pumps and CT Fans (C1):
	Explain the role of CT pumps in circulating water through the cooling towers to
	facilitate heat transfer (C1).
	Discuss the function and characteristics of CT fans in creating air movement
	within the cooling towers (C1).
4	Construction Details/Lubricating Oil System for PA Fan, FD Fan, ID Fan (C2):
	Discuss the construction details of the Primary Air (PA) Fan, Forced Draft (FD)
	Fan, and Induced Draft (ID) Fan in a boiler system, including their components
	and design features (C2).
	Explain the lubricating oil system used in these fans, including the oil reservoir,
	oil pumps, filters, coolers, and lubrication points (C2).
	Discuss the importance of proper lubrication and maintenance of the fan
	bearings and other moving parts (C2).
	Air Pre-heaters (C2):
	Describe the types and functions of air pre-heaters in a boiler system, such as
	recuperative and regenerative pre-heaters (C2).
	Explain the constructional details of air pre-heaters, including the arrangement
	of heating elements and the flow of flue gas and air (C2).
	Discuss the concept of Self-Cleaning Air Pre-heater (SCAPH) and its working
	principle (C2).
	Explain the use of soot blowers in air pre-heaters for removing ash and soot
	deposits (C2).
	Fuel Firing Arrangements and Burners (C3):
	Describe different fuel firing arrangements used in boilers, such as corner firing,
	front wall firing, and rear wall firing (C3).
	Explain the concepts of direct and indirect firing methods and their advantages
	in specific applications (C3).
	Provide details about coal and oil burners, including their construction, fuel
	atomization mechanisms, and ignition systems (C3).
	Discuss the burners' tilting mechanism and its role in optimizing combustion

efficiency (C3).
Explain the atomization process of fuel oil in oil burners and the role of igniters
in initiating combustion (C3).

Teaching - Learning Strategies	Contact Hours
Lecture	25
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Mapping of Assessment with COs

Nature of Assessment						CO2	CO3	CO4		
Quiz										
VIVA										
Assignment / Prese	entation				✓	✓	✓	✓		
Unit test										
Practical Log Book	x/ Record]	Book								
Mid Semester Exam	mination 1				✓	✓	✓	✓		
Mid Semester Exam	mination 2	,			 ✓ 	✓	✓	✓		
University Examin	ation				 ✓ 	✓	 ✓ 	✓		
Feedback Process			1. Stu	dent's Fee	edback					
			2. Cou	rse Exit S	Exit Survey					
Students Feedback	is taken th	nrough various s	steps							
		ough Mentor Me	-	tem.						
2. Feedback b	etween the	e semester throu	igh goog	le forms.						
3. Course Exi	t Survey w	vill be taken at t	he end of	semester	r.					
References: (List of reference books)										
	i) P. K. Nag, (2014), Power Plant Engineering: Steam and Nuclear,							lear,		
	Tata McGraw-Hill Publishing Company Ltd., 4th EditionISBN13 9789339204044.							SN13		
	ii)	Wood, A.J. an Control, John				and				

			I	Facul	lty of	f Eng	ginee	ering	and 7	Fechr	olog	у			
Name of the Department							Mechanical Engineering								
Name of the Program						В	. Tec	h.							
Course Co	ode														
Course Ti	itle					Т	'otal (Qualit	y Mar	nagem	ent				
Academic	Year	•				Π	[
Semester						Г	V								
Number o	of Cre	dits				3									
Course Pr	rereq	uisite				N	lil								
Course Sy	Course Synopsis						xplain	ing tł	ne sali	ent co	ntribu	tions	quality of Qual arriers ir	ity Gur	us like
Course O	utcon	nes:													
At the end	of the	e cou	rse, si	tuden	ts wil	l be a	ble to):							
CO1	Nee	ed and	d step	s of r	nainta	aining	g Qua	lity e	nviron	ment	of the	orgar	ization.		
CO2	The	e TQN	M app	roacł	n for 1	nanu	factur	ring/se	ervice	organ	izatio	n at le	ngth		
CO3		ality 1 ning'				rance	and	Varia	bility	PDCA	A cyc	le, Cr	osby's	10 poin	ts and
CO4	The	e inter	rnatio	nal/n	ationa	al Qu	ality S	Standa	ards						
Mapping Outcomes		urse	Outc	omes	s (CO	s) to	Prog	ram (Outco	mes (I	POs)&	& Pro	gram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	1	-	2	-	2	2	2	2	2	3	2	3	2	1
CO2	3	2	-	2	-	1	1	1	1	1	2	3	3	1	-
CO3	3	1	-	2	-	2	2	2	2	2	3	3	3	2	1
CO4	3	1	-	1	-	2	2	2	2	2	2	3	3	1	-
Average	3	1.25	-	1.75	-	1.75	1.75	1.75	1.75	1.75	2.5	2.75	3	1.5	0.5
	1	1	1	1	1	1	1	<u>I</u>	1	1	1	1	I	1	1
Course (Cont	ent:													
L (Hours	/Week	x)		T (E	Iours/	Week))	P (Hours/	Week))	Total	Hour/	Week

3		0	0	3			
Unit	Content & Competencies						
	Introduction Provide an organizations Explain the competitive to Define quality and services Total Quality Introduce the relevance in a Present the T Discuss the TQM practic Explain the objectives (C Customer Fo Highlight th organizationa Discuss customer nee	& Competencies to Quality Managem introduction to the s (C1). evolution of qualit pusiness environment by and discuss its v (C1). Management (TQN e basic concepts of achieving organizati QM framework, inc barriers and challent es (C2). concept of quality 2). cus and Satisfaction e importance of c al success (C3). tomer orientation ds and expectations	hent (C1): concept of quality and y management and its in t (C1). arious dimensions in relat A) Basics (C2): f Total Quality Managen onal excellence (C2). luding its key principles ar nges commonly encounter statements and their rol (C3): customer focus in TQM and its role in understa (C3).	I its significance in nportance in today's ion to both products nent (TQM) and its nd components (C2). red in implementing le in setting quality and its impact on unding and meeting			
	 Explain the concepts of customer satisfaction, customer complaints customer retention and their significance in TQM (C3). Costs of Quality (C2): Explore the costs associated with quality management, including prev costs, appraisal costs, and failure costs (C2). Discuss the impact of poor quality on organizational performance at benefits of investing in quality improvement (C2). TQM Philosophy and Tools (C2): Introduce the TQM philosophy and its key principles, including lead commitment, continuous improvement, and employee involvement (C2). Discuss lean and Just-in-Time (JIT) principles and their application improving quality and efficiency (C2). Explain strategic quality planning and the role of quality councils in corganizational improvement (C2). Describe the PDCA (Plan-Do-Check-Act) cycle as a systematic approproblem-solving and continuous improvement (C2). Discuss the 5S methodology and Kaizen as tools for workplace organization 						

	Contributions of Deming, Juran, and Crosby (C3):
	Highlight the significant contributions of W. Edwards Deming, Joseph M.
	Juran, and Philip B. Crosby to the field of quality management (C3).
	Discuss their respective philosophies and methodologies, including Deming's 14
	Points, Juran's Quality Trilogy, and Crosby's Zero Defects (C3).
2	Introduction to Process Quality (C1):
2	Provide an overview of process quality and its significance in achieving
	organizational goals (C1).
	Discuss the importance of process improvement in enhancing product/service
	quality and customer satisfaction (C1).
	Graphical and Statistical Techniques for Process Quality Improvement (C2):
	Introduce graphical tools used for data representation and analysis in process
	quality improvement, such as histograms, scatter plots, and Pareto charts (C2).
	Explain statistical techniques commonly employed in process quality
	improvement, including descriptive statistics, inferential statistics, and
	correlation analysis (C2).
	Discuss the use of graphical and statistical methods in identifying and
	prioritizing areas for improvement in a process (C2).
	Sampling, Sampling Distribution, and Hypothesis Testing (C3):
	Explain the concept of sampling and its importance in collecting data for
	process quality analysis (C3).
	Discuss sampling distribution and its role in making inferences about a
	population based on sample data (C3).
	Introduce hypothesis testing as a statistical technique for evaluating the validity
	of claims or hypotheses about a population (C3).
	Regression (C3):
	Present regression analysis as a tool for examining the relationship between a
	dependent variable and one or more independent variables (C3).
	Discuss the use of regression in predicting future values and identifying
	influential factors in a process (C3).
	Control Charts (C2):
	Explain the concept of control charts and their role in monitoring process
	stability and identifying process variations (C2).
	Introduce different types of control charts, such as X-bar and R charts, and
	discuss their interpretation (C2).
	Illustrate the use of control charts in detecting and addressing process deviations
	and out-of-control conditions (C2).
	Process Capability Analysis (C3):
	Describe process capability analysis as a method for assessing whether a
	process meets customer specifications and requirements (C3).

	Explain key process capability indices, such as Cp, Cpk, and Ppk, and their
	interpretation (C3).
	Discuss the application of process capability analysis in process improvement and acting realistic performance targets (C_2)
	and setting realistic performance targets (C3).
	Measurement System Analysis (C2):
	Discuss the importance of measurement system analysis in ensuring reliable and
	accurate data for process quality evaluation (C2).
	Introduce techniques such as repeatability and reproducibility studies, gauge
	R&R (repeatability and reproducibility), and attribute agreement analysis (C2).
	Explain the interpretation of measurement system variation and its impact on
	process quality (C2).
	Analysis of Variance (ANOVA) (C3):
	Present ANOVA as a statistical technique for comparing means across multiple
	groups or factors (C3).
	Discuss the use of ANOVA in identifying sources of variation and evaluating
	the significance of different factors in a process (C3).
	Design and Analysis of Experiments (DOE) (C3):
	Introduce DOE as a systematic approach for optimizing process parameters and
	identifying the factors that most significantly impact process performance (C3).
	Explain the principles of experimental design, including factor selection,
	randomization, replication, and blocking (C3).
	Discuss the analysis and interpretation of experimental results to make informed
	decisions for process improvement (C3).
3	Six Sigma for Process Improvement:
5	
	Explain the concept of Six Sigma and its application in process improvement
	(C2).
	Discuss the DMAIC (Define, Measure, Analyze, Improve, Control)
	methodology used in Six Sigma projects (C2).
	Present the roles and responsibilities of key personnel in a Six Sigma project,
	such as Champions, Black Belts, Green Belts, and Yellow Belts (C2).
	Quality Function Deployment (QFD):
	Introduce Quality Function Deployment as a method for translating customer
	requirements into specific design and process characteristics (C2).
	Explain the QFD process, which involves capturing customer needs,
	establishing design targets, and aligning the organization's resources and
	processes to meet those targets (C2).
	Failure Mode Effect Analysis (FMEA):
	Discuss the importance of reliability and failure prevention in ensuring
	product/service quality (C2).
	Explain the concept of Failure Mode Effect Analysis (FMEA) and its role in

	identifying and mitigating potential failures in design and process (C2).
	Present the stages of FMEA, including identification of failure modes,
	assessment of their effects, determination of their causes, and development of
	corrective actions (C2).
	Highlight the requirements for reliability, such as failure rate and mean time
	between failures (MTBF) (C2).
	Discuss the importance of documentation in FMEA, including maintaining a
	comprehensive record of identified failure modes, their effects, and
	corresponding preventive measures (C2).
	Seven Old (Statistical) Tools:
	Introduce the seven old (statistical) tools used in quality management and
	process improvement (C2).
	Explain the purpose and application of each tool, which includes Pareto charts,
	cause-and-effect diagrams, histograms, scatter plots, control charts, flowcharts,
	and check sheets (C2).
	Seven New Management Tools:
	Discuss the seven new management tools used in quality management and
	process improvement (C2).
	Explain the purpose and application of each tool, which includes affinity
	diagrams, interrelationship digraphs, tree diagrams, prioritization matrices,
	matrix diagrams, process decision program charts (PDPC), and activity network
	diagrams (C2).
	Benchmarking:
	Introduce benchmarking as a systematic process of comparing an organization's
	performance, products, or processes with those of industry leaders or best
	practices (C2).
	Discuss the benefits of benchmarking in identifying improvement opportunities
	and setting performance targets (C2).
	Poka Yoke:
	Explain the concept of Poka Yoke, also known as mistake-proofing or error-
	proofing (C2).
	Discuss the use of Poka Yoke techniques and devices to prevent or detect errors
	or defects in a process (C2).
4	IS/ISO 9004:2000 - Quality Management Systems - Guidelines for Performance
	Improvements:
	L
	Introduce IS/ISO 9004:2000, which provides guidelines for organizations
	seeking to improve their performance through effective quality management
	systems (C2).
	Explain the key principles and concepts outlined in IS/ISO 9004:2000, such as
	une neg principies and concepts outmice in 15/150 500 (2000, such as

customer focus, process approach, involvement of people, continuous
improvement, and evidence-based decision making (C2).
Discuss how IS/ISO 9004:2000 can be used to drive organizational performance
improvements and enhance customer satisfaction (C2).
Quality Audits:
Explain the concept of quality audits and their role in evaluating the
effectiveness of a quality management system (C2).
Discuss the types of quality audits, including internal audits and external audits
conducted by third-party certification bodies (C2).
Highlight the importance of objective evidence, documentation review,
interviews, and observations in conducting quality audits (C2).
TQM Culture:
Discuss the importance of building a Total Quality Management (TQM) culture
within an organization (C2).
Explain how a TQM culture promotes continuous improvement, customer
focus, employee involvement, and a process-oriented mindset (C2).
Leadership in Quality Management:
Discuss the role of leadership in driving quality management initiatives (C2).
Explain the concept of a quality council, which is a cross-functional team
responsible for setting quality goals, defining strategies, and monitoring progress (C2).
Discuss the importance of employee involvement, motivation, empowerment,
recognition, and rewards in fostering a culture of quality within an organization
(C2).
Introduction to Software Quality:
Explain the unique considerations and challenges related to software quality
management (C2).
Discuss the importance of software quality standards, such as ISO/IEC 25010,
in ensuring the reliability, usability, efficiency, and security of software
products (C2).
Highlight the role of software testing, code reviews, and quality assurance
processes in achieving software quality objectives (C2).

Teaching .	Learning	Strategies	and Contac	t Hours
I cauning -	' Lear ming	Buategies	and Contac	t Hours

Teaching - Learning Strategies	Contact Hours
Lecture	26
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	2

Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	10
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4
Assignment / Presentation	✓	✓	✓	✓
Mid Semester Examination 1	✓	✓	✓	✓
Mid Semester Examination 2	✓	✓	✓	✓
University Examination	~	~	✓	✓

Feedback Process	1.	Student's Feedback
	2.	Course Exit Survey

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:	(List of reference books)
	 D. C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, 3rd Edition, ISBN- 978-0470169926.
	2. Dale H. Besterfield et al, Total Quality Management, Third edition, Pearson

3.	Education, ISBN- 9789332534452. Shridhara Bhat K, Total Quality Management – Text and Cases, Himalaya Publishing House, ISBN- 978-8178662527.
----	---

Facult	y of Engineering and Technology
Name of the Department	Mechanical Engineering
Name of the Program	B. Tech.
Course Code	
Course Title	Production Planning and Control
Academic Year	II
Semester	IV
Number of Credits	3
Course Prerequisite	Nil
Course Synopsis	This course introduces students the dynamics of material flow through a manufacturing system, techniques of production planning and control. PPC is the process of production planning sets the objectives, goals, targets on the basis of available resources with their given constraints. Control is the integral part of effective planning. Similarly, control involves assessment of the performance; such assessment can be made effectively only when some standards are set in advance Planning involves setting up to such standard. The controlling is made by comparing the actual performance with the present standard and deviations are ascertained and analysed.

Course Outcomes:

At the end of the course, students will be able to:

CO1	Acquire Knowledge of type of production planning technique.
CO2	Acquire Knowledge of production planning.
CO3	Acquire Knowledge of Control and implement PPC methods in crucial areas of the industry.
CO4	Acquire Knowledge of Implementation of ERP systems and shop floor scheduling.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO	PO	РО	РО	РО	РО	PO	РО	РО	PO	РО	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	-	-	-	2	2	2	2	3	2	3	3	1	-	-
CO2	3	-	-	-	2	2	2	2	3	2	3	3	1	-	-
CO3	3	-	-	-	2	2	2	2	3	2	3	3	1	2	-

CO4	3	-	-	-	2	2	2	2	3	2	3	3	1	2	-	
Average	3	<u>-</u> 2 2 2 2 3 2 3 <u>3</u> 1 <u>1</u> -										-				
Course Content:																
L (H	(Hours/Week) T (Hours/Week) P (Hours/Week))	Total Hour/Week				
	3					0				0				3		
Unit			Cont	ent &	c Con	npete	ncies						1			
1		Exp whi utili Disc proc Fun Exp capa and Disc proc Fact Disc plan avai and Exp plan Rev Syst Prov thei Disc mas Exp requ	lain t ch in zation cuss ductiv ource a ctions dacity perfo cuss duction tors In cuss duction tors In cuss duction technic dain technic	the of clude n, me the b vity, alloca s of P he ke plann how on ope fluen the f and ty an ologi how and co f Fu an ov lamen he ke roduct he ke	bjecti e ensu eting penefi reduce ation, roduce y fur ing, j ce me each eration factor contro d acce ical ac these contro andar vervie ental fe ey cor tion s MR plan j	ves ouring custo its of ed and e etion action produ- produ- onitor fun as an MPC s that fun s that fun s that fun action mental w of eature npon chedu P sy- produ-	of pla time omer of effe lead contra s of p action close fing (f ction d mee C (Ma at can syster 7 of d cemer tors of cesses Feat Mate es (C2 ents of ale, in stems ction	nning ly and demar active times ced d ol: orodue schee C2). cont eting of nufac n infl ns, s data, p tts (C2) ures erial I c). of an 1 c) schee C2). cont eting of nufac nufac nufac nufac can infl s (C2) ures erial I c). of an 1 c) schee C2). cont eting of nufac can infl s (C2) cont eting of cont eting of cont eting of cont eting of cont eting of cont eting of cont eting of cont eting of cont eting of cont eting of cont eting of cont eting of co	d efficients, ar plann plann , inc. ecision ction of duling ribute custon turing uence uch a produc 2). mpact of Ma Requir MRP a ory rec these ties, a n Ner	contro cient i ad mining a reased n-mak contro , mate s to ner rec Planm the us acc tion v the aterial rement system ords, i e con nor ds, i	ol in a produ- imizin and co- l cust- ing (C l, incl erial p ensurf- quiren- ing ar perfo- curacy ariabi effecti Requ ts Pla- n, incl and le apone anage ess:	ction, ng cos ontrol tomer (22). uding lannin ing su hents (nd Cou rmance of c lity, s ivenes ivenes ireme nning uding ad tim nts to invent	optimi ots (C2). , such satisfa deman ng, inve mooth (C2). ntrol) Pe ce of r demand upplier s and ents Pla (MRP) the bill ne data (o calcu tory lev	as imp action, d foreca ntory co and ef erforma nanufac foreca perform efficien nning (system	source proved better asting, ontrol, ficient nce: eturing asting, nance, acy of MRP) ns and eerials, aterial).	

	(C2).
	Explain how changes in demand, lead times, or other variables can cause
	fluctuations and instability within an MRP system (C2).
	Highlight the importance of accurate data, effective forecasting, and appropriate
	system parameters in mitigating system nervousness and maintaining the
	stability of an MRP system (C2).
2	Sales and Operations Planning (S&OP):
	Explain the concept of Sales and Operations Planning (S&OP) and its
	importance in aligning sales forecasts with production capabilities (C2).
	Discuss the key steps involved in the S&OP process, including demand
	forecasting, production planning, inventory management, and financial analysis
	(C2).
	Highlight the benefits of effective S&OP, such as improved customer service,
	optimized inventory levels, reduced lead times, and enhanced decision-making
	(C2).
	Production Planning:
	Describe the process of production planning, which involves determining the
	production quantities, schedules, and resources required to meet the demand
	(C2).
	Explain how production planning considers factors such as available capacity,
	production constraints, material availability, and lead times (C2).
	Discuss different techniques and tools used in production planning, such as
	capacity planning, production levelling, and production control (C2).
	Master Scheduling and Order Promising:
	Define master scheduling and its role in translating the production plan into a
	detailed schedule (C2).
	Discuss the factors considered in master scheduling, including customer
	demand, production capacity, and inventory levels (C2).
	Explain how order promising is performed based on the master schedule, taking
	into account lead times, availability of materials, and production constraints
	(C2).
	Distribution Resource Planning (DRP):
	Introduce the concept of Distribution Resource Planning (DRP) and its role in
	managing the flow of goods from production to distribution (C2).
	Discuss the key components of DRP, including demand forecasting, inventory
	planning, order management, and transportation logistics (C2).
	Explain how DRP helps optimize distribution operations, minimize stockouts,
	and improve customer service (C2).
	Bills of Material Structuring, Master Scheduling, and Final Assembly
	Scheduling:

	Explain the concept of bills of material (BOM) and their role in defining the		
	components and subassemblies required for final product assembly (C2). Discuss the structuring of BOMs, including the identification of parent items		
	subassemblies, and raw materials (C2).		
	Describe the process of master scheduling; which involves determining the		
	production quantities and schedules for finished products based on customer		
	demand and production capabilities (C2).		
	Discuss final assembly scheduling, which focuses on coordinating the		
	production of finished products based on the master schedule and availability of		
	components (C2).		
3	Capacity Management using Planning Factors:		
	Explain the concept of capacity management and its importance in ensuring that		
	the production capacity meets the demand requirements (C2).		
	Discuss the use of planning factors, such as lead time, setup time, and		
	processing time, in estimating and planning the capacity needed for production		
	(C2).		
	Highlight the factors that influence capacity utilization, including machine		
	availability, labor efficiency, and production variability (C2).		
	Bills of Capacity:		
	Describe the concept of bills of capacity and their role in defining the capacity		
	requirements for each operation or work center (C2).		
	Explain how bills of capacity are structured, including the identification of		
	resource requirements, time standards, and skill levels (C2).		
	Discuss how bills of capacity are used in capacity planning and scheduling to		
ensure that the required resources are available for production (C2			
	Capacity Requirements Planning (CRP) and I/O Control:		
	Introduce Capacity Requirements Planning (CRP) as a technique for		
	determining the capacity needed at each work center based on the production		
	schedule (C2).		
	Discuss how CRP considers factors such as routing, lead times, and resource		
	availability to identify any capacity constraints or bottlenecks (C2).		
	Explain the concept of I/O (Input/Output) control, which involves monitoring		
	and controlling the flow of materials and resources on the shop floor to ensure		
	efficient utilization of capacity (C2).		
	Shop Floor Control/Operations Scheduling:		
	Describe shop floor control as the process of managing and coordinating the		
	activities on the shop floor to meet production schedules and optimize resource		
	utilization (C2).		
	Discuss the techniques and tools used in shop floor control, such as Gantt		
	charts, dispatch lists, and visual management systems (C2).		
	charto, dispatch noto, and visual management systems (C2).		

	Explain how operations scheduling is performed to assign tasks to specific work centers and allocate resources based on priority, availability, and capacity constraints (C2).		
	Inventory Models:		
	Introduce different inventory models used in production and operations management, such as Economic Order Quantity (EOQ), Just-in-Time (JIT), and		
	Material Requirements Planning (MRP) (C2).Discuss the principles and assumptions underlying each inventory model and their application in managing inventory levels (C2).Highlight the benefits of effective inventory management, including reduced		
	carrying costs, minimized stockouts, and improved customer service (C2).		
4	Shop Floor Control/Scheduling:		
	Explain the concept of shop floor control and its role in managing and coordinating activities on the shop floor to meet production schedules and optimize resource utilization (C2).		
	Discuss the use of scheduling techniques such as Gantt charts, dispatch lists, and		
	visual management systems to schedule and monitor production operations		
	(C2).		
	Introduce Kanban and pull systems as effective methods for controlling		
production flow and ensuring a smooth and efficient production pro-			
	Discuss the implementation and parameter settings of Kanban and pull systems, including determining the appropriate number of Kanban cards or setting		
reorder points (C2).			
	Explain alternative pull systems, such as CONWIP (Constant Work in Progress) and DBR (Drum-Buffer-Rope), and their application in different production environments (C2).		
	Discuss the concept of pull systems for suppliers, where suppliers produce and deliver materials based on customer demand signals, enabling a streamlined supply chain (C2).		
	ERP Systems:		
	Introduce ERP (Enterprise Resource Planning) systems as integrated software solutions that support various business functions, including manufacturing,		
	finance, and supply chain management (C2).		
Focus on the technical aspects of SAP (Systems, Applications, and I			
	one of the leading ERP software providers, including its architecture, modules,		
	and database management (C2).		
	Discuss the implementation of ERP systems, including the steps involved in		
	system selection, data migration, customization, and training (C2).		
	Highlight the importance of system fit, which refers to the alignment between		
	the ERP system's functionalities and the specific needs and processes of the		
	and and systems functionalities and the spectric needs and processes of the		

manufacturing firm (C2).		
Beyond ERP Software for Manufacturing Firms:		
Discuss the limitations of ERP systems in addressing all the needs and		
challenges of manufacturing firms (C2).		
Introduce the concept of Beyond ERP, which refers to complementary		
technologies and strategies that extend the capabilities of ERP systems (C2).		
Discuss different solutions beyond ERP, such as advanced analytics, IoT		
(Internet of Things), and cloud computing, and their role in improving		
manufacturing operations (C2).		
Supply Chain Management:		
Provide an overview of supply chain management and its importance in		
ensuring the smooth flow of materials, information, and services across the		
entire supply chain (C1).		
Discuss the key elements of supply chain management, including demand		
planning, inventory management, logistics, and supplier relationship		
management (C1).		
Highlight the role of technology, such as ERP systems and other supply chain		
management software, in enabling effective supply chain management (C1).		

Teaching - Learning Strategies	Contact Hours
Lecture	25
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)

Nature of Assess	nent		C01	CO2	CO3	CO4
Quiz						
VIVA						
Assignment / Pres	entation		✓	✓	✓	✓
Unit test						
Practical Log Boo	k/ Record Book					
Mid Semester Exa	mination 1		✓	 ✓ 	✓	 ✓
Mid Semester Exa	mination 2		✓	✓	✓	✓
University Examin		✓	 ✓ 	✓	 ✓ 	
Feedback Process	S	1. Student's Fee	edback			
		2. Course Exit S	Survey			
Students Feedback	k is taken through various s	steps				
1. Regular fe	edback through Mentor Me	entee system.				
2. Feedback b	between the semester throu	igh google forms.				
3. Course Ext	it Survey will be taken at the	he end of semester	r.			
References:	(List of reference books))				
	i) S. K Mukhopadhyay (20			d Control	l: Text an	d Cases,
	2nd Edition, Phi Learning.					
	ii) Stephen N. Chapman (2			uction Pla	anning ar	nd
	Control, Prentice Hall. ISE	3N: 978-0-130-1761	5-8.			

Faculty of Engineering and Technology					
Name of the Department	Mechanical Engineering				
Name of the Program B. Tech.					
Course Code					
Course Title Mechanical Vibration					
Academic Year	II				
Semester	IV				
Number of Credits	3				
Course Prerequisite	Engineering Mechanics				
Course Synopsis Course Outcomes: At the end of the course, students wil CO1 Understanding the fundam	A structure or a body is said to vibrate if it has a to and fro motion. A greater proportion of human activities involve vibration in one form or the other. We hear because our eardrums vibrate. The cause and effects of vibration must be clearly understood. The structures designed to support the high speed machines are subjected to inherent unbalance which causes problems. The unbalance may be due to faulty design or poor manufacture. Because of cyclic vibration, the material of the structure or the machine component may undergo fatigue failure. Vibration causes fasteners such as nuts of the machine to become loose. In metal machining processes, vibration may cause chatter, which results in poor surface finish. If the natural frequency of vibration of a machine or structure equals the forced frequency caused by external excitation, resonance occurs which causes dangerously large oscillations and the structure fails. A bridge can collapse due to wind-induced vibration. Critical instruments mounted on machines may lose their accuracy due to excessive vibrations. Vibrations can be used for useful works such as vibration testing equipments, vibratory conveyors, hoppers, sieves, compactors, washing machines.				

CO1	Understanding the fundamentals concepts of vibration.
CO2	To understand the free and forced vibrations with two-degree freedom system.
CO3	To learn the methods to solve vibration problems with multi-degree freedom system.
CO4	To understand the basics of vibration of continuous systems and experimental methods in vibration analysis and the working of vibration measuring instruments.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific

Outcomes	:														
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	1	1	1	1	2	3	3	3	2	1
CO2	3	1	2	3	1	1	1	1	2	1	2	2	3	2	2
CO3	3	2	2	2	2	1	2	1	2	1	2	2	3	1	2
CO4	3	2	1	1	2	2	1	2	3	2	3	3	3	2	1
Average	3	1.75	1.5	2	1.75	1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5
Course (Cont	ent:													
	Hours		:)		T (E	Iours/	Week))	P (Hours	Week))	Total	Hour/	Week
	3					0				0				3	
Unit		(Cont	ent &	c Con	npete	ncies								
		freq Sing Exp vibr Disc deri Intro influ Resj Exp exci Intro obta	uency gle Do lain t ation cuss f vation oduce ponse lain l tation oduce ining	y, dar egree he co analy the ec n usir e the to A how ns (C2 e Duh g the s	nping of Fr oncept ysis ((quation ng Ne cond rbitra single 2). amel' system	, reso eedor t of si C1). on of wton ¹ cept namic ry Pe e deg s inte	n anco n Sys ingle moti s seco of n beha riodio ree o ogral a ponse	e, and stems: degre on for ond la atural avior o c Exci f free as a m (C2).	respo e of f r sing w of r frequ of the tation dom ethod	ireedon le deg motion uency system is: system for sc	C1). n syst gree o n (C1) and n (C1) ns res lving	ems a f free damp pond the ec	acceleration dom sy bing ration dom sping ration arbition of the second	r releva stems a tio and trary pe of motio	nce in and it thei eriodic

	equations of motion for single degree of freedom systems (C2).
	Forced Vibration with Elastically Coupled Viscous Dampers:
	Discuss the concept of elastically coupled viscous dampers and their role in
	controlling vibration in mechanical systems (C2).
	Analyze the forced vibration response of a single degree of freedom system with
	elastically coupled viscous dampers (C2).
	System Identification from Frequency Response:
	Explain the process of system identification using frequency response data (C2).
	Discuss the techniques for estimating system parameters, such as natural
	frequency and damping ratio, from the frequency response (C2).
	Transient Vibration and Laplace Transformation Formulation:
	Introduce the concept of transient vibration and its analysis in single degree of
	freedom systems (C2).
	Discuss the use of Laplace transformation and Laplace domain representation in
	analyzing transient vibration problems (C2).
2	Free Vibration of Spring-Coupled System:
2	Explain the concept of a spring-coupled system and its relevance in vibration
	analysis (C1).
	Derive the equations of motion for a spring-coupled system with multiple degrees of freedom (C1).
	Analyze the free vibration response of a spring-coupled system and determine
	the natural frequencies and mode shapes (C2).
	Mass-Coupled System:
	Discuss the concept of a mass-coupled system and its significance in vibration
	analysis (C1).
	Derive the equations of motion for a mass-coupled system with multiple degrees of freedom (C1).
	Analyze the free vibration response of a mass-coupled system and determine the
	natural frequencies and mode shapes (C2).
	Bending Vibrations of Two Degree of Freedom System:
	Explain the concept of bending vibrations in a two-degree-of-freedom system
	(C1).
	Derive the equations of motion for a two-degree-of-freedom system undergoing
	bending vibrations (C1).
	Analyze the bending vibration response and determine the natural frequencies
	and mode shapes of the system (C2).
	Forced Vibration:
	Discuss forced vibrations and their occurrence in mechanical systems (C1).
	Analyze the forced vibration response of a system under external excitation
	(C2).

	1
	Introduce the concept of resonance and discuss its effects on forced vibration
	(C2).
	Vibration Absorber:
	Explain the concept of a vibration absorber and its purpose in reducing vibration
	amplitudes (C1).
	Discuss the design and implementation of vibration absorbers to mitigate
	unwanted vibrations (C1).
	Vibration Isolation:
	Discuss the concept of vibration isolation and its importance in reducing
	transmitted vibrations (C1).
	Explain the techniques and methods used to isolate a vibrating system from its
	surroundings (C1).
	Force Transmissibility and Support Motion:
	Introduce the concept of force transmissibility and its relation to the input and
	output forces in a vibrating system (C1).
	Discuss the influence of support motion on the transmissibility of forces in a $(C1)$
	system (C1).
	Analyze the effect of different support conditions on the overall vibration
	response of a system (C2).
3	Normal Mode of Vibration:
	Define the concept of normal mode of vibration and its significance in vibration
	analysis (C1).
	Explain how a system can vibrate in its normal modes, which represent
	independent patterns of motion (C1).
	Discuss the characteristics of normal modes, including their natural frequencies
	and mode shapes (C2).
	Flexibility Matrix and Stiffness Matrix:
	Introduce the flexibility matrix and stiffness matrix as mathematical
	representations of the dynamic behavior of a system (C1).
	Explain how the flexibility matrix relates displacements to applied forces and
	the stiffness matrix relates forces to displacements (C1).
	Eigen value and Eigenvector:
	Define eigenvalues and eigenvectors and their importance in vibration analysis
	(C1).
	Discuss the eigen value problem and its solution, which involves finding the
	values and corresponding vectors that satisfy a specific equation (C2).
	Orthogonal Properties:
	Explain the concept of orthogonality and its relevance to vibration analysis
	(C1).
	Discuss the orthogonal properties of eigenvectors, including their independence

	and perpendicularity (C2).
	Modal Matrix:
	Define the modal matrix and its role in representing the mode shapes of a
	system (C1).
	Explain how the modal matrix is constructed using the eigenvectors of the system (C_1)
	system (C1).
	Modal Analysis:
	Describe the process of modal analysis, which involves determining the natural
	frequencies, mode shapes, and modal damping of a system (C1).
	Discuss the practical applications of modal analysis, such as in structural
	dynamics and vibration control (C1).
	Forced Vibration by Matrix Inversion:
	Explain the method of forced vibration analysis using matrix inversion (C2).
	Discuss how the modal matrix and modal coordinates can be used to solve the
	equations of motion for forced vibration (C2).
	Modal Damping in Forced Vibration:
	Discuss the concept of modal damping and its influence on the forced vibration
	response of a system (C2).
	Explain how modal damping ratios can be determined and their effects on the
	overall system response (C2).
	Numerical Methods for Fundamental Frequencies:
	Introduce numerical methods for calculating the fundamental frequencies of with ratio a sustained (C2)
	vibrating systems (C2).
	Discuss techniques such as the finite element method, finite difference method,
4	and numerical eigen value solvers (C2).
4	System Governed by Wave Equations:
	Discuss systems that can be described by wave equations, such as vibrating
	strings, rods, beams, and plates (C1).
	Explain the wave equation and its significance in modeling the dynamic behavior of these systems $(C1)$
	behavior of these systems (C1).
	Vibration of Strings:
	Discuss the vibration characteristics of strings, including their natural
	frequencies and mode shapes (C1).
	Explain the concepts of transverse vibration, standing waves, and harmonics in v_{i} with ratio q_{i} (C1)
	vibrating strings (C1). Vibration of Rods:
	Describe the vibration behavior of rods, including longitudinal and transverse vibrations $(C1)$
	vibrations (C1).
	Discuss the natural frequencies, mode shapes, and boundary conditions of vibrating rods $(C1)$
	vibrating rods (C1).

 Explain the concept of vibration testing and its importance in analyzing the dynamic behavior of structures (C1). Discuss the difference between free vibration tests, which involve exciting a structure and measuring its response, and forced vibration tests, which apply known forces to the structure (C1). Examples of Vibration Tests - Industrial Case Studies: Provide examples of real-world vibration tests conducted in industrial settings (C2). Discuss the objectives, methodologies, and outcomes of these case studies, highlighting their relevance to industrial applications (C2). Current Industry Trends: Discuss current trends in the field of vibration analysis and testing, such as the use of advanced sensing technologies, data analytics, and automation (C2). Highlight the impact of these trends on improving the accuracy, efficiency, and reliability of vibration analysis in various industries (C2).
to generate controlled vibrations in structures (C1). Discuss different types of vibration exciters, including electrodynamic shakers, hydraulic exciters, and modal exciters (C1). Vibration Tests - Free and Forced Vibration Tests:
equation (C1). Effects of Rotary Inertia and Shear Deformation: Explain the effects of rotary inertia and shear deformation on the vibration characteristics of beams (C1). Discuss how these factors influence the natural frequencies and mode shapes of vibrating beams (C1). Vibration of Plates: Discuss the vibration behavior of plates, including their natural frequencies and mode shapes (C1). Explain the concepts of bending and membrane vibrations in plates (C1). Vibration Measuring Instruments: Introduce various instruments used for measuring vibrations, such as accelerometers, displacement transducers, and vibrometers (C1). Discuss the principles of operation and applications of these instruments (C1). Vibration Exciters: Explain the purpose and operation of vibration exciters, which are devices used
Euler's Equation for Beams:Introduce Euler's equation for beams, which describes the bending vibration of beams (C1).Discuss the assumptions and boundary conditions associated with Euler's

Teaching - Learning Strategies	Contact Hours
Lecture	30
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Teaching - Learning Strategies and Contact Hours

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assess	ment		CO1	CO2	CO3	CO4		
Quiz								
VIVA								
Assignment / Pres	sentation		✓	✓	✓	✓		
Unit test								
Practical Log Boo	ok/ Record Book							
Mid Semester Exa	amination 1		 ✓ 	✓	✓	✓		
Mid Semester Exa	amination 2		 ✓ 	✓	 ✓ 	✓		
University Exami		✓	✓	✓	✓			
Feedback Proces	S	1. Student's Fee	edback					
		2. Course Exit	e Exit Survey					
Students Feedbac	k is taken through various	steps						
1. Regular fe	edback through Mentor Me	entee system.						
	between the semester throu							
3. Course Ex	tit Survey will be taken at t		r.					
References:	(List of reference books))						
	i) William T. Thomson (20) Pearson Education India. I ii) R V Dukkipati (2008), ISBN: 978-1-842-65222-0	SBN: 978-8-131-70 Advanced Mechanic)482-0.					

Name of	f the Department	Mechanical Engineering			
Name of	f the Program	B. Tech.			
Course	Code				
Course	Title	Tool Design			
Academ	ic Year	П			
Semeste	er	IV			
Number	r of Credits	3			
Course	se Prerequisite Engineering Workshop				
Course	Synopsis	Tool design is a specialized area of manufacturing engineering comprising the analysis, planning, design construction, and application of tools, methods, and procedures necessary to increase the manufacturing productivity.			
Course	Outcomes:				
At the en	nd of the course students wil	l be able to:			
CO1	Understand introduction, 1	Understand introduction, regulation of speed and feeds.			
CO2	Learn the designing of ma	Learn the designing of machine tool structures and its constructional features.			
CO3	Understand mechanical pr	Understand mechanical properties of materials and testing.			
CO4	Learn about advance materials and its applications.				

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	2	2	-	-	-	-	-	-	1	2	2	3	1
CO2	3	2	3	2	-	-	-	-	-	-	1	3	1	3	3
CO3	3	2	2	2	2	-	-	-	-	-	1	2	-	3	3
CO4	3	2	3	3	2	-	-	-	-	-	2	3	-	3	2
Average	3	2	2.5	2.25	2	-	-	-	-	-	1.25	2.5	0.75	3	2.25

Course (Content:			
L (1	Hours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week
	3	0	0	3
Unit	Conten	t & Competencies		
1	 Provide an highlighting Explain the including the Discuss the transmission Explain the machine toor Regulation Discuss the (C1). Explain the multiple spectrum discuss the (C1). Introduce regular performance Discuss the Discuss the performance 	g its importance in the e concept of workin heir roles and function kinematics of machine n within the machine (e principles and mec- ols, including gears, be of Speeds and Feeds: e aim and significance e concept of stepped eed settings to accomme use of multiple speed ay diagrams and desi- ation, emphasizing the e (C1). e design aspects of s	rse on machine tool du field of machining (C1) ag and auxiliary motions in the machining process the tools, focusing on the	ons in machine tools, ess (C1). study of motion and its notion transmission in lation in machine tools which involves using ing operations (C1). ls and their advantages e context of speed and er design for optimal drives, and feed box
2	Explain the their role in (C1). Discuss th including f margins (C Discuss th focusing o quality of n Explain th factors such	n providing stability, p e design consideration actors such as static a 1). e design consideration n minimizing deflect machining (C1). e selection of materian as strength, stiffness,	es: ements of machine tool s recision, and support fo ons for strength in ma and dynamic loads, stre ons for rigidity in ma ions and vibrations to als for machine tool durability, and cost (C1 tures of machine tools	r machining operations achine tool structures, ss analysis, and safety achine tool structures, ensure accuracy and structures, considering).

	housings, columns and tables, saddles and carriages (C1).
3	Design of Guideways, Power Screws, and Spindles:
	Guideways:
	Explain the functions and types of guideways in machine tools, including
	sliding guideways, rolling guideways, aerostatic slideways, and anti-friction
	guideways (C1).
	Discuss the design considerations for guideways, including factors such as load
	capacity, accuracy, friction, wear, and lubrication (C1).
	Explain the design principles for aerostatic slideways, including the use of air
	pressure to support the load and minimize friction (C1).
	Discuss the design considerations for anti-friction guideways, focusing on the
	selection and arrangement of bearings to provide smooth and precise motion
	(C1).
	Explain the concept of combination guideways, which combine different types
	of guideways to optimize performance in specific applications (C1).
	Power Screws:
	Describe the design considerations for power screws, including factors such as
	load capacity, pitch selection, efficiency, and backlash (C1).
	Discuss the calculation and selection of power screws based on the desired load,
	speed, and accuracy requirements (C1).
	Spindles and Spindle Supports:
	Explain the functions of spindles in machine tools, including providing
	rotational motion and supporting cutting tools (C1).
	Discuss the requirements for spindles in terms of accuracy, stiffness, damping,
	and thermal stability (C1).
	Explain the effect of machine tool compliance on machining accuracy and the design considerations for minimizing compliance (C1).
	Describe the design principles for spindles, including factors such as material
	selection, spindle configuration, and cooling methods (C1).
	Discuss the use of antifriction bearings in spindle design, considering factors
	such as load capacity, speed, and lubrication (C1).
4	Dynamics of Machine Tools: Machine Tool Elastic System
	Explain the concept of the machine tool elastic system, which includes the
	machine structure, guideways, spindles, and other components that exhibit
	elastic deformation during operation (C1).
	Discuss the importance of considering the elastic behavior of machine tools in
	terms of machining accuracy, stability, and vibration control (C1).
	Describe the methods for modeling and analyzing the elastic behavior of
	machine tool structures, including finite element analysis and experimental
	modal analysis (C1).

Static and Dynamic Stiffness Acceptance Tests:
Explain the significance of static and dynamic stiffness in machine tools and
their impact on machining performance (C1).
Discuss the acceptance tests for static stiffness, which involve measuring the
machine tool's resistance to deformation under static loads (C1).
Describe the acceptance tests for dynamic stiffness, which involve measuring
the machine tool's response to dynamic excitations and analyzing its natural
frequencies and mode shapes (C1).
Discuss the criteria for evaluating the static and dynamic stiffness of machine
tools and the implications for machine tool design and performance (C1).
Current Industry Trends:
Provide an overview of current trends in machine tool dynamics, such as the
development of high-speed machining, precision machining, and advanced
control systems (C2).
Discuss the integration of advanced technologies, such as active vibration
control, adaptive control, and intelligent monitoring systems, in machine tool
design and operation (C2).
Highlight the importance of addressing dynamic considerations in the design
and development of machine tools to meet the evolving needs of modern
manufacturing (C2).
k

Teaching - Learning Strategies	Contact Hours
Lecture	26
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	2
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4			
Quiz							
VIVA							
Assignment / Presentation	✓	✓	 ✓ 	✓			
Unit test							
Practical Log Book/ Record Book							
Mid Semester Examination 1	 ✓ 	✓	 ✓ 	✓			
Mid Semester Examination 2	✓	✓	 ✓ 	✓			
University Examination	✓	✓	 ✓ 	✓			
Feedback Process	1. Student's Feedback						
	2. Course Exit Survey						
Students Feedback is taken through vari	ious steps						

1. Regular feedback through Mentor Mentee system.

- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

i) Principles of Machine Tools/ G. C. Sen and A. Bhattacharyya / New Central Book Agency/ASINB01FIX1MKA.
ii) Design of Machine Tools / D. K Pal, S. K. Basu / Oxford /ISBN: 9788120417779/Product Code-EBK0013309.

			I	Facul	ty of	f Eng	ginee	ering	and 7	Fechr	olog	у					
Name of t	he De	parti	ment			Ν	Mechanical Engineering										
Name of the Program								B. Tech.									
Course Co	ode																
Course Ti	tle					S	EC-I	I (AN	SYS)								
Academic	Year	•				II	[
Semester						Г	V										
Number o	f Cre	dits				2											
Course Pr	erequ	isite				E	ngine	eering	Grap	nics ar	nd Des	sign, S	SolidWo	orks			
Course SynopsisThis course introduces students to ANSYS finite element analysis (FEA) software engineering simulations. Students will fundamental concepts and skills necessary structural and thermal analysis using AI course focuses on pre-processing, solving processing of engineering problems using AI								re use l learn y to pe ANSYS ng, and	d for n the erform . The post-								
Course Ou At the end CO1	of the Prep	e cour pare a	and an						ls for	structu	ural ar	id the	rmal sin	nulatior	ıs in		
CO2	Per	SYS. form SYS.	struct	ural a	analys	sis an	s and evaluate the structural behavior of components using										
CO3				nal an	alysi	s and	evalu	ate h	eat tra	nsfer	pheno	mena	using A	NSYS.			
CO4		erpret cessir			unica	ate sir	nulat	ion re	sults e	effectiv	vely u	sing A	NSYS	post-			
Mapping o Outcomes		urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (l	POs)&	& Prog	gram S	pecific			
COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	3	2	2	2	3	1	-	-	-	1	2	2	3	2	1		
CO2	3	3	3	2	3	1	-	-	-	1	2	2	3	3	-		
CO3	3	3	3	2	3	1	1	-	-	1	1	1	3	3	1		
		3 3 3 2 3 1 1 1 1 1 3 3 1															

Average	3	2.75	2.75	2.25	3	1	0.5	0.25	-	1	1.5	1.5	3	2.75	0.5
		1				1				l	I	I			l
Course (Cont	ent:													
L (Hours/Week) T (Hours/Week) P (Hours/Week))	Tota	l Hour/	Week	
	0					0				4				4	
Sr. No.		Cor	ntent	& Co	mpe	tenci	es						1		
1		Ove AN	erview SYS i	of A nterfa	NSY	'S so nd w	orkflo	e and c w (C2	: Und	lerstar	ding)		nbering oplying)		
2		Stru Fini Bou Solv	ictura te ele indary ving s	l Ana ment conc tructu	lysis meth litior	in A lod (l ls and	NSYS FEM) 1 load	s (10 h and m s (C3:	ours) neshin Appl	g tech ying)	inique	s (C2:		standing	g)
3		 Analyzing) Material Modeling and Simulation (8 hours) Material properties and material models in ANSYS (C2: Understanding) Nonlinear material behavior and plasticity (C4: Analyzing) Composite material analysis (C3: Applying) 													
4		Composite material analysis (C3: Apprying)Thermal Analysis in ANSYS (8 hours)Introduction to thermal analysis and heat transfer (C2: Understanding)Conduction, convection, and radiation heat transfer (C4: Analyzing)Solving thermal problems: steady-state and transient analyses (C3: Applying)										ng)			
5		Flui Intro Solv	d-Str oduct ving F	ucture ion to FSI pr	e Inte FSI oblei	eraction analy ns: st	on (FS ysis ar tructu	SI) An nd cou ral and	alysis pling 1 fluic	(6 ho metho l analy	urs) ods (C	2: Un	derstan alyzing	ding)	
6		Interpretation of FSI results (C3: Applying)Optimization and Design Exploration (8 hours)Introduction to design optimization and parameterized modeling (C2:Understanding)Optimization methods and algorithms in ANSYS (C4: Analyzing)Design of Experiments (DoE) and sensitivity analysis (C3: Applying)													
7		Design of Experiments (DoE) and sensitivity analysis (C3: Applying)Post-Processing and Results Interpretation (8 hours)ANSYS post-processing tools and visualization (C2: Understanding)Extraction of simulation results and data analysis (C3: Applying)Creation of reports and presentations (C3: Applying)													
8		Adv Nor Dyr	vanceo ilinea iamic	d Top r anal analy	ics ((ysis) ysis: 1	5 hou and c moda	rs) ontac il, har	t mecł	nanics , and	(C4: transie	Analy	-	(C4: A	nalyzin	g)
9		Cas	e Stud	lies a	nd Pi	roject	ts (8 h	ours)			ig pro	blems	(C5: C	reating)	

Project work involving structural or thermal analysis (C3: Applying)
Documentation and presentation of project results (C3: Applying)

Teaching-Learning Strategies	Contact Hours
Lecture	
Practical	15
Seminar/Journal Club	
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	10
Problem Based Learning (PBL)	15
Case/Project Based Learning (CBL)	10
Revision	5
Others If any:	
Total Number of Contact Hours	60

Assessment Methods:

Formative	Summative
Viva-voce	Practical Examination & Viva-voce
Problem Based Learning (PBL)	University Examination
Assignment	

Nature of Assessment		CO1	CO2	CO3	CO4
VIVA		✓	✓	✓	✓
Assignment		✓	✓	✓	✓
Practical Log Book/ Record Book	✓	✓	✓	✓	
University Examination		✓	✓	✓	✓
Feedback Process	 Student's Feedba Course Exit Surv 				

Students Feedback is taken through various steps

- 1. Regular feedback through the Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of the semester.

0. 0000002	San bulvey will be taken at the end of the semester.
References:	(List of reference books)
	1. "Engineering Analysis with ANSYS Workbench 19" by Guangming Zhang, College House Enterprises, Edition Year:
	 2019, ISBN: 978-1935673507 "Finite Element Simulations with ANSYS Workbench" by Huei- Huang Lee, SDC Publications, Edition Year: 2021, ISBN: 978-
	 1630574567 "ANSYS Mechanical APDL for Finite Element Analysis" by Mary Kathryn Thompson and John Martin, Butterworth-Heinemann,
	 Edition Year: 2017, ISBN: 978-0128129814 4. "Introduction to Finite Element Analysis Using SOLIDWORKS Simulation" by Randy H. Shih, SDC Publications, Edition Year: 2021, ISBN: 978-1630573874

		I	Facul	lty of	f Eng	Engineering and Technology										
Name of the Department								Mechanical Engineering								
Name of t	he Pr	ogra	m			В	B. Tech.									
Course Co	ode															
Course Ti	tle					S	trengt	h of M	lateria	ls Lab						
Academic	Year	•				I	[
Semester						Г	V									
Number o	f Cre	dits				1										
Course Pr	erequ	uisite				E	ngine	eering	Mech	anics						
Course Sy	nops	is				M fo d a	Strength of Materials (also known as Mechanics Materials) is the study of the internal effect of extern forces applied to structural member. Stress, stra deformation deflection, torsion, flexure, shear diagra and moment diagram are some of the topics covered this subject.						xternal strain, agram,			
Course Ou	utcon	nes:														
At the end	of the	e cou	rse sti	udent	s will	be al	ble to	:								
CO1		estim		nd co	ompa	re the	the strength of solid materials using Tension, shear and									
CO2		deter DD Te		and	com	pare	re the Toughness of the materials using CHARPY and									
CO3		deteri cimer		and c	ompa	re the	the Brinnell and Rockwell hardness number of the given									
CO4	To test		mine	the b	endii	ng str	ength	and	fatigu	e stre	ngth o	of spe	cimen u	using be	ending	
Mapping Outcomes		urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (]	POs)&	& Pro	gram S	pecific		
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	3	3	3	3	3	0	2	0	0	0	0	2	3	2	2	
CO2	3	3	3	3	3	0	2	0	0	0	0	2	3	3	2	
CO3	3	3	3	3	3	0	2	0	0	0	0	2	3	3	3	
CO4	3	3	3	3	3	0	2	0	0	0	0	2	1	3	1	
Average	3	3	3	3	3	0	2	0	0	0	0	2	2.5	2.75	2	

Course Content:										
L (Ho	Iours/Week) T (Hours/Week) P (Hours/Week) Total Ho									
0		0	2	2						
Unit	Content	& Competencies								
1	Evaluation of under tension	• •	-strain diagram on mild	steel and cast iron rods						
2		Determine the mechanical Properties of material by bending test on mild steel using universal testing machine (C4)								
3	-	Comparison of hardness values of steel, copper and aluminium using Brinell hardness testing machine (C3)								
4		of hardness values ing machine (C3)	of steel, copper and alun	ninium using Rockwell						
5			t under tension and comp	ression (C1)						
6	Determinatio	Determination of impact strength for the given specimen using Charpy test (C2)								
7	Determinatio	Determination of impact strength for the given specimen using Izod test (C2)								
8	Determinatio	Determination of fatigue strength for the given specimen using Fatigue test (C4)								
9	Determinatio	n of shear stress for	the given specimen usin	g Torsion test (C1)						
10	Determinatio (C1)	Determination of shear strength for the given specimen using double shear test (C1)								

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	10	
Seminar/Journal Club		
Small Group Discussion (SGD)	10	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision	5	
Others If any:		
Total Number of Contact Hours	30	

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4				
Quiz								
VIVA	✓	✓	✓	✓				
Assignment / Presentation								
Unit test								
Practical Log Book/ Record Book	✓	✓	✓	✓				
Mid Semester Examination 1								
Mid Semester Examination 2								
University Examination								
Feedback Process	1. Stu	1. Student's Feedback						
	2. Co	urse Exit	Survey					

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

Faculty of Engineering and Technology															
Name of t	he De	part	ment			Ν	Iecha	nical	Engin	eering	5				
Name of t	he Pr	ogra	m			В	B. Tech.								
Course Co	ode														
Course Ti	tle					N	later	ial Eı	nginee	ering	& Tec	hnolo	ogy Lab)	
Academic	Year	•				I	[
Semester						Г	V								
Number o	f Cre	dits				1									
Course Pr	erequ	isite				+	2 Phy	sics a	and Cł	nemist	ry				
Course Sy	-					d cr ft cu st d st a	This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a MST curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers, and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long-term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking.							ing to rs the rs, and nge of ivities, project is for n, seek	
Course Ou At the end			rse sti	udent	s will	l be al	ble to	:							
CO1	Unc	lersta	nd ho	ow m	ateria	ls are	are formed and their classification based on atomic								
	arra	ngen	nent.												
CO2	Des	cribe	the r	necha	anical	beha	ehavior of metallic systems and its importance.								
CO3	Eva	luate	syste	em fo	r fatig	gue fa	ilures	5.							
CO4	Gai	n kno	wled	ge on	diffe	erent o	classe	es of n	nateria	als and	l their	appli	cations.		
Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:															
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
	1	4	5	-				0	,	10	11	14			
CO1	3	3 - 1 - 1 1 2 1 - 2 3 3 2													

CO3	3	2	2	3	2	-	2	-	-	-	-	2	3	3	3
CO4	3	2	2	2	1	2	2	-	-	1	-	3	2	2	1
Average	3	2	1.75	2.5	1.75	1.5	2	-	-	0.5	-	2.25	2.75	2.75	2
Course (Course Content:														
L (1	Hours	/Week	x)		T (H	lours/	Week)	P (Hours	Week)		Total	Hour/	Week
0					0			2					2		
Sr. No.			Cont	ent 8	c Con	npete	ncies	;							
1		_			paratio	on an	d mic	ro-str	uctura	ıl exar	ninati	on.			
		C1,	C2,C	3,C4											
2			-			of mi	crost	ructur	es of g	given	specin	nens (1	mild ste	el, gray	⁻ C.I.,
			s, cop C2,C												
3					-					0		0	-	ning, ca	se
4				/	1								, C2,C3 2, C3, (<u>,C4)</u> C4, C5,C	⁷ 6)
5			-	-						-			calipers		
5			•		ichom	-					1113- V			,	
6		Mea	asurer	nent	of eff	ective	e diar	neter	of a sc	erew tl	nread	(C1, C)	C2,C3)		
7		Mea	asurer	nent	of ang	gle us	ing s	ine ba	r & sl	ip gau	ges (C	C1, C2	2,C3)		
8		Stuc	ly & a	angul	ar me	easure	ement	using	g beve	l prote	ector (C1, C	2,C3)		
9		Stuc	dy of	undu	lation	meas	suren	nent u	sing d	ial gau	ige (C	21, C2	,C3)		
10		Stuc	dy of	corro	sion i	n giv	en sa	mple	(C1, C	C2,C3))				
11		Mea	asurer	nent	of gea	ar din	nensi	ons us	ing to	ol ma	ker's 1	nicros	scope (C	C1, C2,0	C3)

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	15
Seminar/Journal Club	
Small Group Discussion (SGD)	10

Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	30

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination (OSPE)	University Examination
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz				
VIVA	~	✓	~	✓
Assignment / Presentation				
Unit test				
Practical Log Book/ Record Book	~	✓	~	✓
Mid Semester Examination 1				
Mid Semester Examination 2				
University Examination				

Feedback Process	1. Student's Feedback							
2. Course Exit Survey								
Students Feedback is taken through various	steps							
1. Regular feedback through Mentor M	lentee system.							
2. Feedback between the semester through google forms.								
3. Course Exit Survey will be taken at the end of semester.								

References:

i) V. Raghavan. Materials Science and Engineering, PHI; Fifth edition (30 July 2011), ASIN: B00K7YGKWQ

ii) William D. Callister, David G. Rethwisch, Fundamentals of Materials Science And Engineering: An Integrated Approach, John Wiley & Sons; 4th Edition edition (8 December 2011), ISBN: 1118061608

iii) William F. Smith and Javad Hashemi (2004), Foundations of materials science and engineering 5th Edition, McGraw Hill, 2009, ISBN: 9780073529240

Name of the															
	he Department Mechanical Engineering he Program B. Tech.														
Name of the	e Pro	ograi	n			В	. Tec	h.							
Course Cod	le														
Course Title	e					Ν	lanu	factu	ring P	roces	ses La	ıb			
Academic Y	Year II														
Semester	IV														
Number of	Cre	dits				1									
Course Prei	erequisite Engineering Workshop														
Course Syn	opsis In this syllabus to introduce about manufacturing process, welding process and other important things which are very needful to a mechanical engineer. Students learn metal cutting operations like turning, milling, drilling, shaping, etc., Joining Processes, Metal Forming Processes, methods of measurements, Super Finishing Processes, Sheet Metal Developments.											things gineer. g, Metal			
Course Out															
At the end of	f the	cour	se, st	uden	ts wil	l be a	ble to):							
CO1	Exp	lain t	he m	echar	ism o	of chi	p fori	natio	n in m	achini	ng.				
	Exp slott		he va	rious	macl	nining	g proc	esses	such	as turi	ning, c	lrilling	g, borin	g, shapi	ng,
CO3	Use	the p	orinci	ples c	of ma	chine	tools	•							
CO4	Cho	ose n	nateri	ials ir	a ma	anufa	cturin	g pro	cess b	ased o	on thei	r prop	perties.		
CO5	Con	duct	expe	rimen	ts on	vario	ous m	anufa	cturing	g proc	esses.				
Mapping of Outcomes:														-	
COs ¹	PO 1	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	1	-	-	1	-	2	2	3	2	2
CO2	3	3	2	2	2	-	1	-	-	1	-	1	3	2	2
CO3	3	3	3	3	2	1	-	-	2	1	1	2	3	1	-
CO4	3	2	1	_	-	3	2	_	1	1	2	3	3	-	

CO5	3	1	1	1	1	-	-	-	1	1	2	2	3	1	1
Average	3	2.4	2	1.6	1.4	1	0.6	-	1	0.8	1.4	2	3	1.2	1
Course (Cont	ent:													
L (Hours/Week) T (Hours/Week) P (Hours/Week)												Total	Hour/	Week	
	0				0					2				2	
Sr. No.			Cont	ent &	c Con	npete	encies	;					1		
1		Stuc	ły an	d Pra	ctice of	of Or	thogo	onal &	Oblic	que Cı	utting	on a L	athe (C	21, C2,C	C3,C4)
2		cyli	Machining time calculation and comparison with actual machining time while cylindrical turning on a Lathe and finding out cutting efficiency (C1, C2,C3,C4,C5)												
3			Study of Tool Life while Milling a component on the Milling Machine (C1, C2,C3,C4)												
4							-			ing sp g (C1,				lepth of	cut
5			ly of C3,C4		Wear	of a	cuttir	ng too	l whil	e Dril	ling oi	n a Dr	illing M	Iachine	(C1,
6		Prep	parati	on of	joint	using	g spot	weld	ing (C	C1, C2	,C3,C	4,C5,0	C6)		
7		Prep	parati	on of	butt j	oint	using	arc w	elding	g (C1,	C2,C	3,C4,0	C5,C6)		
8		Wel	ding	of sta	inless	s-stee	el spe	cimen	using	g MIG	weldi	ng (C	1, C2,C	3,C4,C	5,C6)
9		-						-		Prepa (C1, C				ray, fun	nel,
10		Stuc											g, burni	shing	
11			ly of ,C2)	divid	ed he	ad an	nd ger	eratio	on of g	gear pr	ofile	on mil	ling ma	chine	
12		To perform taper turning and thread cutting by different methods on lathe machine (C1, C2,C3,C4,C5,C6)													
13		To select an appropriate grinding wheel to perform cylindrical & surface grinding operation (C1, C2,C3,C4)													
14		-	Study and practice of Linear and angular measurement instruments (C1,C2)											2)	

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	15	
Seminar/Journal Club		
Small Group Discussion (SGD)	10	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	30	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination (OSPE)	University Examination
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Nature of Assessment	CO1	CO2	CO3	CO4	
Quiz					
VIVA	✓	✓	✓	✓	
Assignment / Presentation					

Unit test											
Practical Log Boo	ok/ Record Book		√	✓	✓	✓					
Mid Semester Ex	amination 1										
Mid Semester Ex	amination 2										
University Exami	ination										
Feedback Proces	55	1. Student's	s Feedbac	k							
		2. Course E	Exit Surve	сy							
Students Feedbac	k is taken through	various steps									
1. Regular fe	eedback through M	entor Mentee	system.								
2. Feedback	between the semes	ter through go	ogle forn	ns.							
3. Course Ex	kit Survey will be ta	aken at the end	l of seme	ster.							
References:	(List of reference books)										
	i) P N Rao, Vol. 1,	, Foundry, Form	ning and W	/elding, M	cGraw Hill	, 5th Editio	n, ISBN-				
	13: 978-93-5316-0	50-0.									
	ii) Workshop Tec			0		arg, Laxm	i				
	Publications; Fourth Edition (2018), ISBN-10: 8131806979										

			I	Facul	lty o	f Eng	ginee	ering	and 🛛	Fechr	olog	у					
Name of	f the De	part	ment			N	/lecha	nical	Engin	eering	ç						
Name of	f the Pr	ogra	m			B	B. Tech.										
Course	Code																
Course '	Title					N	Mobile Robots										
Academ	ic Year	•				I	Ι										
Semeste	r					Г	V										
Number	of Cre	dits				3											
Course]	Prerequ	isite				R	Roboti	cs En	gineer	ring ar	nd Ap	plicati	ons				
Course CO1	This course introduces the fundamentals of roboti emphasizing mobile robots, which are integrat mechanical, electrical and computational system functioning in the physical world. Topics include sta of-the-art technologies in mobile robotics, such locomotion, sensing, communication, localization a mapping, navigation, etc. Advanced topics such coordination of multiple mobile robots will also discussed. The course aims to provide both the studen theoretical and practical experience lectures and hand on experiments with real robots and simulation softwa are Outcomes: At the end of the course, students will be able to:										ystems state- ach as on and ach as lso be udents hands- tware.						
CO2	Dev	velop	a bas	ic un	dersta	andin	g of n	nobile	robot	contr	ol sys	tems.					
CO3	Unc	lersta	nd th	e loca	alizat	ion of	f Rob	ots.									
CO4	Unc	lersta	ind ba	sics o	of im	age p	roces	sing a	nd its	use in	the d	esigni	ng of m	obile ro	obots.		
Mappin Outcom COs	es:	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	gram S PSO1	pecific	PSO3		
<u>CO1</u>	1	2	3	4	5	6	7	8	9	10	11	12					
CO1	3	2	2	2	2	2	-	-	-	-	0	3	3	2	2		
CO2	3	3	2	2	2	2	-	-	-	-	0	1	3	2	1		
CO3	3	2	3	3	3	2	-	-	-	-	1	1	3	2	2		
CO4	3	2	3	3	3	2					3	1	3	2	2		

Average	3	2.25	2.5	2.5	2.5	2	-	-	-	-	1	1.5	3	2	1.75
							1								
Course (Cont	ent:													
L (Hours	/Week	x)		T (F	Iours/	Week)		P (Hours	Week)		Tota	Hour	/Week
	3				0 0									3	
Unit			Cont	ent &	c Con	npete	encies								
1		AB	rief H	Histor	y of I	Mobil	le Roł	otics	(C1)						
		-		-				-	nt of n						
				-									ics (C1))	
													s (C3)		
				-					in mo	bile r	obotic	s for r	isky int	ervent	ion and
							ts (C3	, ,	fmoh	ila rol	ota in	auch	onviror	monte	(C2)
									n moo	ne io	JOIS III	Such	enviror	ments	(C3)
		Locomotion Principles (C2) Understanding the key principles of locomotion in mobile robotics (C2)													
		Examining different locomotion mechanisms, including legged, wheeled,											ed, and		
			al rob	-											
		Key	v Issue	es in l	Loco	motio	on (C3)							
		Inve	estiga	ting t	the challenges and issues related to locomotion in mobile robotics										
		(C3)												
			lyzin ciency	-	actors such as stability, adaptability, terrain traversal, and energy (23)										
		Mol	bile R	lobot	t Kinematics: Introduction (C2)										
		Intr	oduci	ng th	the concept of mobile robot kinematics (C2)										
		Und	lersta	nding	ng the relationship between robot motion and its kinematic model									model	
		(C2	·												
							onstr		. ,	1 • 1			•		
		-		-			inematic models for mobile robots (C3)								
			•	0	straints imposed on robot motion and maneuverability (C3) W_{c}										
					ot Workspace (C3) the workspace of mobile robots and its impact on robot mobilit										obility
		(C3		ig tik	the workspace of moone robots and its impact on robot mooning									ioonn.	
		ì	<i>,</i>	g the	the reachable and unobstructed regions for mobile robot operation										
		(C3													
			·	Basic	Kine	matic	s (C4)							
		Del	ving i	nto a	dvano	ced to	pics i	n mo	bile ro	bot ki	nema	tics (C	24)		
		Exp	loring	g mot	ion p	lanni	ng, ob	stacl	e avoi	dance	and s	ensor	integra	tion (C	4)
		Mot	tion C	Contro	ol (Ki	nema	tic Co	ontrol) (C4)						

	Studying motion control strategies for mobile robots (C4)
	Analyzing kinematic control techniques for precise robot motion (C4)
	Thatyzing kilentate control techniques for precise root motion (CT)
2	Sensors Classification (C1)
	Introduction to sensor classification in robotics (C1)
	Understanding the different types and functionalities of sensors (C1)
	Sensor Characterization (C2)
	Techniques for characterizing and calibrating sensors (C2)
	Evaluating sensor performance and accuracy (C2)
	Wheel/Motor Encoders (C2)
	Exploring the use of wheel/motor encoders for robot control (C2)
	Understanding how encoders provide information about robot speed and
	distance traveled (C2)
	Heading/Orientation Sensors (C2)
	Examining sensors used to measure robot heading and orientation (C2)
	Analyzing the role of these sensors in robot navigation and control (C2)
	Ground-based Beacons (C2)
	Understanding the use of ground-based beacons for robot localization and
	positioning (C2)
	Exploring the principles and techniques behind beacon-based sensing (C2)
	Active Ranging Sensors (C2)
	Investigating active ranging sensors, such as lidar and ultrasonic sensors (C2)
	Analyzing their capabilities for environment perception and obstacle avoidance
	(C2)
	Motion/Speed Sensors (C2)
	Exploring sensors used to measure robot motion and speed (C2)
	Understanding their applications in robot control and feedback (C2)
	Vision-based Sensors (C3)
	Studying vision-based sensors, including cameras and depth sensors (C3)
	Analyzing computer vision techniques for object recognition, tracking, and
	mapping (C3)
	Low-Level Control (C3)
	Introduction to low-level control techniques in robotics (C3)
	Exploring motor control, PID control, and feedback control (C3)
	Control Architectures and Software Frameworks (C4)
	Understanding different control architectures, such as hierarchical and behavior-
	based architectures (C4)
	Exploring software frameworks for robot control, such as ROS (Robot
	Operating System) (C4)
	Robot Learning (C4)

Overview of robot learning techniques, including supervised, unsupervis	and and
	.u, anu
reinforcement learning (C4)	. 1
Analyzing the role of learning algorithms in adapting robot behavior and	control
(C4)	
Case Studies of Learning Robots (C5)	
Examining real-world case studies of robots that employ learning algo	orithms
(C5)	
Analyzing the challenges, benefits, and limitations of learning-based	robot
control (C5)	
2 Later bestien (C1)	
3 Introduction (C1)	
Overview of the course objectives and topics (C1)	,
Introduction to the challenges and importance of localization, mappin	g, and
navigation in robotics (C1)	
The Challenge of Localization: Noise and Aliasing (C2)	
Understanding the impact of noise and aliasing on robot localization (C2)	
Exploring techniques to mitigate noise and aliasing effects in localization	. ,
To Localize or Not to Localize: Localization-based Navigation	versus
Programmed Solutions (C2)	
Analyzing the advantages and limitations of localization-based navigation	
Comparing localization-based navigation with pre-programmed solutions	(C2)
Map Representation (C2)	
Overview of map representation techniques in robotics (C2)	
Understanding the different types of maps, such as grid maps and feature	e-based
maps (C2)	
Probabilistic Mapping (C3)	
Exploring probabilistic mapping techniques, such as occupancy gri	ds and
Bayesian filters (C3)	
Understanding the probabilistic nature of mapping and its impact or	robot
localization (C3)	
Map-based Localization (C3)	
Understanding map-based localization methods, such as scan matching	ng and
particle filters (C3)	
Analyzing the strengths and weaknesses of map-based localization tech	iniques
(C3)	
Autonomous Map Building (C4)	
Exploring techniques for autonomous map building in robotics (C4)	
Analyzing simultaneous localization and mapping (SLAM) algorithms (C	4)
Planning and Navigation (C4)	
Overview of planning and navigation techniques in robotics (C4)	

	Understanding the role of path planning and obstacle avoidance in robot
navigation (C4)	
	Obstacle Avoidance (C4)
	Exploring obstacle avoidance algorithms and techniques (C4)
	Analyzing reactive approaches and behavior-based navigation (C4)
	D* Algorithm (C4)
	Introduction to the D* algorithm for dynamic path planning (C4)
	Understanding the principles and implementation of the D* algorithm (C4)
	Navigation Architecture (C5)
	Overview of navigation architectures in robotics (C5)
	Analyzing layered architectures and deliberative/reactive approaches (C5)
	Case Studies (C5)
	Examining real-world case studies of navigation architectures in robotics (C5)
	Analyzing the challenges, benefits, and limitations of different navigation
	approaches (C5)
4	Introduction to Computer Vision (C1)
	Overview of computer vision and its applications (C1)
	Introduction to the fundamental concepts and challenges in computer vision
	(C1)
	Image Processing: Point Operators (C2)
	Understanding point operators for image enhancement and manipulation (C2)
	Applying point operators for image contrast adjustment, brightness correction,
	and thresholding (C2)
	Image Processing: Linear Filters (C2)
	Introduction to linear filters for image smoothing, sharpening, and noise reduction $(C2)$
	reduction (C2)
	Understanding different types of linear filters, such as Gaussian, mean, and
	median filters (C2)
	Image Processing: More Neighborhood Operators (C2)
	Exploring neighborhood operators, including edge detection and gradient-based
	operators (C2)
	Analyzing techniques such as Sobel, Prewitt, and Laplacian operators (C2)
	Fourier Transforms (C3)
	Understanding Fourier transforms for image frequency analysis and filtering
	(C3)
	Applying Fourier transforms for image compression and feature extraction (C3)
	Pyramids and Wavelets (C3)
	Introduction to image pyramids for multi-resolution analysis and image scaling
	(C3)

Exploring wavelet transforms for image compression, denoising, and edge		
detection (C3)		
Geometric Transformations (C3)		
Understanding geometric transformations, including translation, rotation,		
scaling, and affine transformations (C3)		
Applying geometric transformations for image registration, alignment, and		
perspective correction (C3)		
Camera Technology: History in Brief (C1)		
Exploring the historical development of camera technology (C1)		
Understanding the key milestones and advancements in camera systems (C1)		
Machine Vision vs. Closed Circuit Television (CCTV) (C2)		
Comparing machine vision systems with closed circuit television (CCTV)		
systems (C2)		
Analyzing the differences, applications, and requirements of machine vision in		
industrial settings (C2)		
Sensor Technologies (C3)		
Overview of sensor technologies used in camera systems (C3)		
Understanding the principles of image sensors, including CCD and CMOS		
technologies (C3)		
Spatial Differentiation: 1D and 2D (C3)		
Exploring spatial differentiation techniques for image edge detection and feature		
extraction (C3)		
Understanding the concepts of gradient and Laplacian operators (C3)		
CCD Technology and Frame Readout (C4)		
In-depth study of CCD (charge-coupled device) technology in camera systems		
(C4)		
Understanding different frame readout principles, including full frame, frame		
transfer, and interline transfer		

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
Lecture	30
Practical	
Seminar/Journal Club	3
Small Group Discussion (SGD)	3
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5

Case/Project Based Learning (CBL)	
Revision	4
Others If any:	
Total Number of Contact Hours	45

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem-Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz				
VIVA				
Assignment / Presentation	~	✓	✓	~
Unit test				
Practical Log Book/ Record Book				
Mid-Semester Examination 1	✓	✓	✓	✓
Mid-Semester Examination 2	✓	✓	✓	✓
University Examination	✓	✓	✓	✓

Feedback Process		1. Student's Feedback
		2. Course Exit Survey
Students Feedback	is taken th	rough various steps
1. Regular fee	dback thro	ugh Mentor Mentee system.
2. Feedback b	etween the	semester through google forms.
3. Course Exit	Survey w	ill be taken at the end of semester.
References:	(List of r	eference books)
	i)	Embedded Robotics: Mobile Robot Design and Applications with
		Embedded Systems. T. Braunl. Springer-Verlag 2003.
	ii)	Roland Siegwart&Illah R. Nourbakhsh, "Introduction to autonomous
		mobile robots", Prentice Hall of India, 2004.
	iii)	George A. Bekey "Autonomous Robots" MIT Press.
	iv)	Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A.
		Kantor, Wolfram Burgard, Lydia E. Kavrakiand Sebastian Thrun,
		"Principles of Robot motion: Theory, Algorithm and
		Implementations", MIT Press.

		1	acu		r Eng	ginee	ring	and	Fechr	olog	У			
he De	epart	ment			Ν	Mechanical Engineering								
he Pr	ogra	m			B	B. Tec	h.							
ode														
tle					N	Iobil	e Rob	ots L	ab					
Year	•				I	[
					Г	V								
of Cre	dits				1									
erequ	uisite	<u>,</u>			R	loboti	cs En	gineer	ring ar	nd Ap	plicati	ons		
Synopsis A mobile robot lab is a specialized facility equip with resources and tools for conducting experiments research related to mobile robotics. It provides environment to study the design, control, navigat and sensing canabilities of mobile robots								nts and les an						
utcon	nes:				ľ			-						
of the	e cou	rse, st	uden	ts wil	l be a	ble to):							
Stuc	dents	will st	art an	alyzin	ıg, dev	velopi	ng and	l prese	nting c	control	& nav	vigation	systems	for
app	licatio	ons tha	at spar	n mult	iple d	iscipli	nes th	rough	labora	tory ex	ercise	s.		
Dev	elop a	an unc	lerstar	nding	of fac	tors th	nat affe	ect sys	tem pe	erforma	ance a	nd stabil	ity.	
Stuc	dents	will b	e able	to det	fine se	ensing	and c	ontroll	er requ	iireme	nts for	unmanı	ned vehi	cles
that	opera	ate in o	differe	ent co	nditio	ns.								
Un	dersta	and the	e local	izatio	n of R	Robots								
of Co	urse	Outc	omes	(CO	s) to	Prog	ram (Outco	mes (]	POs)&	& Pro	gram S	pecific	
•														
	he Pr ode tle Year of Cre rerequ nops utcon of the Stue app Dev Stue that Un	he Progra ode itle Year f Credits rerequisite mopsis utcomes: of the cou Students applicatio Develop Students that opera Understa	he Program ode itle Year of Credits rerequisite mopsis utcomes: of the course, st applications tha Develop an unc Students will be that operate in of Understand the of Course Outc	ode tle Year f Credits rerequisite mopsis utcomes: of the course, studen Students will start an applications that spar Develop an understar Students will be able that operate in differe Understand the local of Course Outcomes	he Program ode itle Year of Credits rerequisite mopsis utcomes: of the course, students wil Students will start analyzin applications that span mult Develop an understanding Students will be able to dea that operate in different con Understand the localizatio of Course Outcomes (CO	he Program B ode III itle M Year III of Credits 1 rerequisite R mopsis A wrear III retrequisite R mopsis A wrear R mopsis A wrear R wrear R wrear R mopsis A wrear R wrear R wrear R wrear R wrear R wrear R of the course, students will be a IDevelop an understanding of fac Students will be able to define se	he Program B. Tec ode II itle Mobile Year II of Credits 1 rerequisite Roboti mopsis A mol with regression A mol with regression and set utcomes: of the course, students will be able to of the course, students will be able to Students will start analyzing, developi applications that span multiple discipli Develop an understanding of factors the Students will be able to define sensing that operate in different conditions. Understand the localization of Robots Understand the localization of Robots	he Program B. Tech. ode Mobile Rob itle Mobile Rob Year II Frequisite Robotics En mopsis A mobile rewith resource research relenvironment and sensing utcomes: of the course, students will be able to: Students will start analyzing, developing and applications that span multiple disciplines th Develop an understanding of factors that affer that operate in different conditions. Understand the localization of Robots. of Course Outcomes (COs) to Program (COS)	he Program B. Tech. ode Mobile Robots La tle Mobile Robots La Year II IV IV of Credits 1 rerequisite Robotics Engineer mopsis A mobile robot I with resources and research related environment to s and sensing capab utcomes: of the course, students will be able to: Students will start analyzing, developing and prese applications that span multiple disciplines through Develop an understanding of factors that affect sys Students will be able to define sensing and controll that operate in different conditions. Understand the localization of Robots.	he Program B. Tech. ode Mobile Robots Lab itle Mobile Robots Lab Year II IV IV of Credits 1 rerequisite Robotics Engineering at mopsis A mobile robot lab is with resources and tools research related to m environment to study and sensing capabilities utcomes: of the course, students will be able to: Students will start analyzing, developing and presenting of applications that span multiple disciplines through labora Develop an understanding of factors that affect system pe Students will be able to define sensing and controller require that operate in different conditions. Understand the localization of Robots.	he Program B. Tech. ode Mobile Robots Lab tle Mobile Robots Lab Year II of Credits 1 rerequisite Robotics Engineering and App mopsis A mobile robot lab is a spewith resources and tools for cresearch related to mobile environment to study the da and sensing capabilities of motile environment to study the da and sensing capabilities of motile environment to study the da and sensing capabilities of motile environment to study the data sensing capabilities of motile environment to study the data sensing capabilities of motile environment to study the data sensing capabilities of motile environment to study the data sensing capabilities of motile environment to study the data sensing capabilities of motile environment to study the data sensing capabilities of motile environment to study the data sensing capabilities of motile environment to study the data and sensing capabilities of motile environment to study the data and sensing capabilities of motile environment to study the data and sensing capabilities of motile environment to study the data and sensing capabilities of motile environment to study the data and sensing capabilities of motile environment to study the data and sensing capabilities of motile environment to study the data and sensing capabilities of motile environment to study the data and sensing capabilities of motile environment to study the data and sensing capabilities of motile environment to study the data and sensing and presenting control applications that span multiple disciplines through laboratory explores between the data sensing and controller requirement that operate in different conditions. Understand the localization	he Program B. Tech. ode Mobile Robots Lab Itle Mobile Robots Lab Year II IV IV f Credits 1 rerequisite Robotics Engineering and Applicati mopsis A mobile robot lab is a specializ with resources and tools for conduc research related to mobile robot environment to study the design, and sensing capabilities of mobile r utcomes: of the course, students will be able to: Students will start analyzing, developing and presenting control & nav applications that span multiple disciplines through laboratory exercise Develop an understanding of factors that affect system performance and Students will be able to define sensing and controller requirements for that operate in different conditions. Understand the localization of Robots. of Course Outcomes (COs) to Program Outcomes (POs)& Pro	he Program B. Tech. ode Mobile Robots Lab Year II IV IV f Credits 1 rerequisite Robotics Engineering and Applications ropsis A mobile robot lab is a specialized faci with resources and tools for conducting expresearch related to mobile robotics. It environment to study the design, contro and sensing capabilities of mobile robots. utcomes: of the course, students will be able to: Students will start analyzing, developing and presenting control & navigation applications that span multiple disciplines through laboratory exercises. Develop an understanding of factors that affect system performance and stabil Students will be able to define sensing and controller requirements for unmant that operate in different conditions. Understand the localization of Robots. of Course Outcomes (COs) to Program Outcomes (POs)& Program S	he Program B. Tech. ode

	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	2	2	2	2	-	-	-	-	0	3	3	1	0
CO2	3	3	2	2	2	2	-	-	-	-	0	1	3	2	2
CO3	3	2	3	3	3	2	-	-	-	-	1	1	3	1	2
CO4	3	2	3	3	3	2	-	-	-	-	3	1	3	2	2
Average	3	2.25	2.5	2.5	2.5	2	-	-	-	-	1	1.5	3	1.5	1.5

Course Co	ontent:									
	ours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week						
	0	0	2	2						
Sr. No.	Content & C	Competencies								
1	Overview of	to Mobile Robots (C1 mobile robotics and i to the fundamental co	its applications (C1)	in mobile robotics (C1)						
2	Mobile Robo Study of di wheeled, leg	t Hardware: Locomo fferent locomotion n ged, and aerial (C2)	tion (C2) nechanisms used in n	nobile robots, such as						
3	Mobile Robo Overview of systems, IMI Understandin	 Mobile Robot Hardware: Sensors (C2) Overview of sensors used in mobile robots, including proximity sensors, vision systems, IMU, and GPS (C2) Understanding the principles of operation, data acquisition, and integration of sensors in mobile robot systems (C2) 								
4	Mobile Robo Study of the used in mobi	t Control System: Ha hardware component le robot control system to software framewo	ardware and Software (ts, such as microcontrol ms (C3)	C3) llers and motor drivers, g languages for mobile						
5	Understandin Exploring to	Navigation I: Localization and Mapping (C3)Understanding the concepts of localization and mapping in mobile robots (C3)Exploring techniques such as odometry, landmark-based localization, andsimultaneous localization and mapping (SLAM) (C3)								
6	Introduction navigation (C	 Navigation II: Reasoning and Motion Planning (C3) Introduction to reasoning and decision-making algorithms for mobile robot navigation (C3) Study of motion planning techniques, including potential fields, A*, and RRT-based algorithms (C3) 								
7	Wireless Con Overview of (C2)	nmunication for Mob wireless communicat	tion technologies used i	n mobile robot systems , and data exchange						

	between robots and remote stations (C2)						
8	Advanced Topics: Multiple Robots' Coordination (C4)						
	Exploring advanced concepts and techniques for coordinating multiple mobile						
	robots (C4)						
	Studying approaches to collaboration, task allocation, and communication in						
	multi-robot systems (C4)						
Note:	1. At least 08 experiments/ jobs are to be performed/ prepared by students in the semester.						
	 At least 06 experiments/ jobs should be performed/prepared from the above list; the remaining two may either be performed/prepared from the 						
	above list or designed and set as per the scope of the syllabus of the						
	Engineering Workshop.						

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	20	
Seminar/Journal Club		
Small Group Discussion (SGD)	05	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	05	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	30	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	

Journal Club						

Nature of Assess	sment	CO1	CO2	CO3	CO4					
Quiz										
VIVA		✓	✓	✓	✓					
Assignment / Pre	sentation									
Unit test										
Practical Log Bo	ok/ Record	✓	✓	✓	✓					
Mid-Semester Ex	amination	1								
Mid-Semester Ex	amination	2								
University Exam	ination		✓	✓	✓	✓				
Feedback Proce	SS		1. Student's Feedba	ack						
			2. Course Exit Surv	vey						
Students Feedbac	ck is taken	through	various steps							
1. Regular f	eedback the	rough th	e Mentor Mentee syste	em.						
			ster through google for							
			aken at the end of the	semester.						
References:	(List of r	eference	e books)							
	i)	Embe	dded Robotics: Mobile F	Robot Desi	ign and Ar	plications	with			
			dded Systems. T. Braunl							
	ii)		d Siegwart&Illah R. Nourbakhsh, "Introduction to autonomous							
		mobile robots", Prentice Hall of India, 2004.								
	iii)	George A. Bekey "Autonomous Robots" MIT Press.								
	iv)		e Choset, Kevin M. Lynd							
			am Burgard, Lydia E. K oot motion: Theory, Alg							
		Press.	ot motion. Theory, Alg		1 mpienie	ntations,				

			Ι	Facu	lty of	f Eng	ginee	ering	and 7	Fechr	olog	у			
Name of	the De	epart	ment			Ν	Mechanical Engineering								
Name of	the Pr	ogra	m			В	B. Tec	h.							
Course (Code														
Course 7	ſitle					В	Batter	y Mar	agem	ent Sy	stem				
Academi	ic Year	•				Π	[
Semester	r					Г	V								
Number	of Cre	dits				3									
Course I	Prerequ	uisite				Iı	ntrodu	uction	to Ele	ectric	and H	ybrid	Vehicle	es	
Course (Course Synopsis The outline of this course is to introduce learner batteries, its parameters, modelling and charger requirements. The course will help learner to dever battery management algorithms for batteries. Course Outcomes: At the end of the course, students will be able to:						arging								
CO1									syster	n					
CO2		-				-	-		•		g / dis	charg	ing proc	cess	
CO3	Cal	culate	e the	vario	us pai	amet	ers of	f batte	ry and	l batte	ry pac	ck			
CO4	CO4 Design the model of battery pack														
Mapping Outcome	es:						0						0	-	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
<u>CO1</u>														1	

COS					- 0										
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	1	2	2	1	2	-	-	-	-	-	2	3	1	1
CO2	3	2	2	2	1	2	-	I	I	-	I	2	3	2	-
CO3	3	2	2	2	2	2	-	-	-	-	-	2	3	2	-
CO4	3	2	2	2	2	2	-	-	-	-	-	2	3	2	1
Average	3	1.75	2	2	1.5	2	0	0	0	0	0	2	3	1.75	0.5
Course (Course Content:														

L (Hou	ırs/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week					
	3	0	0	3					
Unit	Content	Content & Competencies							
1	Introduction	to Battery Managem	nent System (BMS):						
	Define a Ba	Define a Battery Management System (BMS) as an electronic system that							
	manages and	manages and monitors the performance, health, and safety of rechargeable							
	batteries (C1)).							
	Explain the in	mportance of a BMS	S in ensuring the efficient	and safe operation of					
	batteries in v	various applications	, such as electric vehicle	es, renewable energy					
	systems, and	portable electronics	(C1).						
	Cells & Batte	eries:							
	Define a cell	as the basic unit o	of a battery that converts of	chemical energy into					
	electrical ene	rgy (C1).							
	-		as a collection of interconr	nected cells that work					
			ge and capacity (C1).						
		• •	batteries, including prir						
		-	racteristics and application	ns (C1).					
		tage and Capacity:							
		•	the average voltage output	it of a fully charged					
	-	normal operating co							
			as the amount of charge a	battery can store and					
		specific period of t							
		-	the nominal voltage and						
	-	inificance in determ	nining the battery's perfo	rmance and runtime					
	(C1).								
		gy, and Power:		1					
			the battery's charging or c	ilscharging current in					
		capacity (C1).	nd norman in valation to ha	ttonias where energy					
	-		nd power in relation to ba	•••					
	-		arge stored in the battery,	and power represents					
	the rate at which energy is delivered or received (C1).								
	Cells Connected in Series and Parallel: Explain the concept of connecting cells in series, where the positive terminal								
	Explain the concept of connecting cells in series, where the positive terminal of one cell is connected to the negative terminal of another cell, resulting in a								
	increased voltage (C1).								
		Explain the concept of connecting cells in parallel, where the positive terminals							
	-	-	ed together, and the neg	-					
	-		in increased capacity (C1).						
		cal and Lithium-ion							

1	
	Explain the basic principles of electrochemical cells, where chemical reactions
	occur at the electrodes to generate electrical energy (C1).
	Discuss the characteristics and advantages of lithium-ion cells, which are widely
	used in rechargeable batteries due to their high energy density, long cycle life,
	and low self-discharge (C1).
	Rechargeable Cell, Charging, and Discharging Process:
	Explain the concept of a rechargeable cell, which can be charged and discharged multiple times (C1).
	Discuss the process of charging a battery, where electrical energy is applied to
	the cell to store energy through the electrochemical reactions (C1).
	Discuss the process of discharging a battery, where the stored energy is released
	as electrical energy for powering devices (C1).
	Overcharge and Undercharge:
	Define overcharge as a condition where a battery is charged beyond its
	recommended voltage or capacity limits, which can lead to reduced battery life, performance degradation, or even safety hazards (C1).
	Define undercharge as a condition where a battery is discharged below its
	recommended voltage or capacity limits, which can lead to reduced battery
	runtime and potential damage (C1).
	Modes of Charging:
	Discuss the different modes of charging batteries, such as constant current (CC),
	constant voltage (CV), and trickle charging, and their respective applications
	(C1).
2	Introduction to Battery Management System (BMS):
	Provide an introduction to the Battery Management System (BMS) as an
	essential component in managing and monitoring the performance, health, and
	safety of rechargeable battery packs (C1).
	Explain the importance of a BMS in optimizing battery pack operation, ensuring
	balanced charging and discharging, protecting against overcharging and over-
	discharging, and extending battery life (C1).
	Battery Pack Topology:
	Discuss different battery pack topologies, such as series-connected, parallel-
	connected, and hybrid configurations (C1).
	Explain the advantages and considerations of each topology in terms of voltage,
	capacity, power output, and system reliability (C1).
	BMS Functionality:
	Provide an overview of the key functionalities of a BMS in a battery pack
	system (C1).
	Discuss the primary functions, including voltage sensing, temperature sensing,
	current sensing, high-voltage contactor control, isolation sensing, thermal

control, protection, communication interface, range estimation, state-of- estimation, and cell total energy and power calculation (C1).	charge
Voltage Sensing:	
Explain the voltage sensing function of the BMS, which involves measur	ing the
voltage of individual battery cells or modules within the pack (C1).	ing the
Discuss the importance of voltage sensing for monitoring cell bala	ancing.
detecting abnormal voltage levels, and ensuring the overall pack w	-
remains within safe operating limits (C1).	
Temperature Sensing:	
Discuss the temperature sensing function of the BMS, which in	volves
measuring the temperature of battery cells, modules, or the surro	unding
environment (C1).	
Explain the significance of temperature sensing for monitoring t	hermal
conditions, detecting overheating or excessive cooling, and implem	nenting
temperature-based safety measures (C1).	
Current Sensing:	
Explain the current sensing function of the BMS, which involves measure	ing the
current flowing into or out of the battery pack (C1).	
Discuss the importance of current sensing for monitoring chargin	-
discharging rates, detecting abnormal current levels, and implementing c	urrent-
based safety protections (C1).	
High-voltage Contactor Control:	
Discuss the high-voltage contactor control function of the BMS, which in	
managing the connection and disconnection of the battery pack to the end or charging source (C1).	xternal
Explain the role of high-voltage contactors in ensuring safe and con	strolled
power delivery and isolation during various operating modes (C1).	nioneu
Isolation Sensing:	
Explain the isolation sensing function of the BMS, which involves mon	itoring
the electrical isolation between the battery pack and the system or chassis	-
Discuss the importance of isolation sensing for detecting potential fa	
leakage currents that may compromise safety (C1).	
Thermal Control:	
Discuss the thermal control function of the BMS, which involves manage	ing the
temperature of the battery pack through active cooling or heating methods	-
Explain the significance of thermal control in maintaining optimal	battery
performance, preventing overheating or freezing, and enhancing overall	-
reliability (C1).	
Protection:	

	Explain the protection function of the BMS, which involves implementing
	safety measures to protect the battery pack from overcharging, over-
	discharging, overcurrent, short circuits, and other abnormal conditions (C1).
	Discuss the importance of protection mechanisms in ensuring the longevity and
	safety of the battery pack (C1).
	Communication Interface:
	Discuss the communication interface function of the BMS, which involves
	providing data exchange capabilities between the BMS and external systems,
	such as vehicle control units or monitoring systems (C1).
	Explain the role of communication interfaces in transmitting vital battery
	information, status updates, and diagnostic data (C1).
	Range Estimation:
	Explain the range estimation function of the BMS, which involves estimating
	the remaining driving range or operating time based on battery capacity, current
	consumption, and other factors (C1).
	Discuss the significance of accurate range estimation for providing users with
	real-time information and optimizing battery utilization (C1).
	State-of-Charge Estimation:
	Explain the state-of-charge estimation function of the BMS, which involves
	-
	estimating the remaining capacity or energy level of the battery pack (C1).
	Discuss the importance of accurate state-of-charge estimation for battery
	management, user convenience, and preventing over-discharging or premature
	charging (C1).
	Cell Total Energy and Cell Total Power:
	Explain the cell total energy and cell total power calculation functions of the
	BMS, which involve aggregating and monitoring the energy and power levels of
	individual battery cells or modules within the pack (C1).
	Discuss the significance of calculating total energy and power for capacity
	planning, load management, and overall pack performance monitoring (C1).
3	Battery State of Charge Estimation (SOC):
	Explain the concept of State of Charge (SOC), which represents the remaining
	capacity or energy level of a battery (C1).
	Discuss the importance of accurate SOC estimation for battery management,
	performance optimization, and user convenience (C1).
	Voltage-Based Methods to Estimate SOC:
	Discuss voltage-based methods commonly used to estimate SOC, such as the
	Open Circuit Voltage (OCV) method and the Coulomb Counting method (C1).
	Explain how these methods utilize the relationship between battery voltage and
	SOC to estimate the state of charge (C1).
	Model-Based State Estimation:

	Introduce model-based state estimation techniques used to estimate SOC, such
	-
	as the Kalman Filter and the Extended Kalman Filter (C2).
	Explain how these methods utilize battery models, incorporating voltage,
	current, and other factors, to estimate the state of charge more accurately (C2).
	Battery Health Estimation:
	Discuss the concept of battery health estimation, which involves assessing the
	overall condition, degradation, and remaining useful life of a battery (C1).
	Explain the importance of battery health estimation for predicting battery
	performance, optimizing maintenance strategies, and ensuring reliable operation
	(C1).
	Lithium-Ion Aging: Negative Electrode:
	Explain the aging mechanisms specific to the negative electrode (anode) in
	lithium-ion batteries, such as lithiation and delithiation processes, solid-
	electrolyte interphase (SEI) formation, and structural degradation (C2).
	Discuss the factors influencing negative electrode aging and its impact on
	battery performance and capacity fade (C2).
	Lithium-Ion Aging: Positive Electrode:
	Explain the aging mechanisms specific to the positive electrode (cathode) in
	lithium-ion batteries, such as phase transitions, side reactions, particle cracking,
	and electrode/electrolyte interface degradation (C2).
	Discuss the factors influencing positive electrode aging and its impact on
	battery performance and capacity fade (C2).
	Cell Balancing:
	Discuss the concept of cell balancing in multi-cell battery packs, which involves
	equalizing the voltage or state of charge among individual cells (C1).
	Explain the importance of cell balancing for improving pack efficiency,
	extending battery life, and preventing overcharging or over-discharging (C1).
	Causes of Imbalance:
	Discuss the various factors that can lead to cell imbalance in a battery pack,
	such as manufacturing variations, cell aging, temperature effects, and
	operational conditions (C1).
	Explain how these factors contribute to voltage variations and capacity
	imbalances among cells (C1).
	Circuits for Balancing:
	Explain different circuit topologies and techniques used for cell balancing in
	battery packs, such as passive balancing, active balancing, and hybrid balancing
	(C1).
	Discuss the operation principles, advantages, and limitations of each balancing
	circuit approach (C1)
4	Design Principles of Battery BMS:
4	

Г	
	iscuss the key design principles of a Battery Management System (BMS),
	hich is responsible for monitoring, controlling, and protecting batteries in
va	arious applications (C2).
Ex	xplain the importance of safety, reliability, accuracy, and efficiency in BMS
de	esign (C2).
Di	iscuss the need for voltage, temperature, and current sensing, as well as state
est	stimation algorithms, protection circuits, communication interfaces, and
dia	agnostic capabilities in a BMS (C2).
Ef	ffect of Distance, Load, and Force on Battery Life and BMS:
Ex	xplain how the physical characteristics of a battery system, such as the
dis	stance between cells/modules, the applied load, and external forces, can
im	npact battery life and BMS performance (C2).
Di	iscuss the influence of distance on the resistance and impedance of
int	terconnecting cables and their effect on the overall system efficiency and
pe	erformance (C2).
Ex	xplain how excessive loads, both electrical and mechanical, can cause stress,
de	egradation, and premature failure of batteries and BMS components (C2).
En	nergy Balancing with Multi-Battery System:
Di	iscuss the challenges associated with energy balancing in a multi-battery
sy	stem, where multiple batteries are connected in parallel or series (C2).
Ex	xplain the importance of energy balancing for maximizing battery pack
pe	erformance, extending overall system life, and ensuring consistent operation
(C	C2).
Di	iscuss different approaches to energy balancing, such as passive balancing,
	tive balancing, and hybrid balancing, and their applicability in multi-battery
sy	vstems (C2).
Ex	xplain how balancing algorithms and control strategies can be implemented
	ithin the BMS to distribute energy evenly among batteries and maintain
	otimal performance (C2).
1	ng Strategies and Contact Hours

Teaching -	Learning	Strategies	and Con	tact Hours
reaching	Louining	Dualegies	and Con	uce mours

Teaching - Learning Strategies	Contact Hours	
Lecture	25	
Practical		
Seminar/Journal Club	4	
Small Group Discussion (SGD)	5	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	7	

Case/Project Based Learning (CBL)	
Revision	4
Others If any:	
Total Number of Contact Hours	45

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessm	nent	CO1	CO2	CO3	CO4					
Assignment / Prese	✓	 ✓ 	 ✓ 	✓						
Mid Semester Exam	nination 1		✓	✓	✓	✓				
Mid Semester Exam	nination 2		✓	✓	✓	✓				
University Examin	ation		✓	✓	✓	~				
			1	1	1	1				
Feedback Process		1. Student's Feedback								
		2. Course Exit Survey								
 Regular fee Feedback b 	is taken through various dback through Mentor M etween the semester thro t Survey will be taken at t	lentee system. ugh google forms								
References:	(List of reference books									
	 Ibrahim Dinçer, Halil S. Hamut and Nader Javani, "Thermal Management of Electric Vehicle Battery Systems", JohnWiley& Sons Ltd., 2016. James Larminie, John Lowry, "Electric Vehicle Technology Explained", John Wiley & Sons Ltd, 2003. Chris Mi, AbulMasrur& David WenzhongGao, "Hybrid electric 									

Vehicle- Principles & Applications with Practical Properties", Wiley, 2011.
2011.

			I	Facul	lty of	f Eng	ginee	ring	and 🛛	Fechr	nolog	у			
Name of	the De	part	ment			Ν	Mechanical Engineering								
Name of	the Pr	ogra	m			В	B. Tec	h.							
Course C	ode														
Course T	itle					В	atter	y Mar	nagem	ent Sy	stem	Lab			
Academic	c Year	•				I	[
Semester						Г	V								
Number	of Cre	dits				1									
Course P	rerequ	isite				Iı	ntrodu	uction	to Ele	ectric	and H	ybrid	Vehicle	es	
Course S						The outline of this Lab course is to analyze batteries, it parameters, modelling and charging requirements. Th Lab work will help learner to develop batter management algorithms for batteries.									
Course O	outcon	ies:													
At the end	l of the	e coui	rse, st	uden	ts wil	l be a	ble to):							
CO1	Inte	erpret	the re	ole of	batte	ery m	anage	ement	syster	n					
CO2	Inte	erpret	the c	oncep	ot ass	ociate	ed wit	h bat	tery cł	nargin	g / dis	charg	ing proc	cess	
CO3	Cal	culate	e the	vario	ıs pai	ramet	ers of	batte	ery and	l batte	ery pac	k			
CO4	Des	ign th	e moc	lel of	batter	y pacl	ς.								
Mapping Outcome		urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (I	POs)&	& Pro	gram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1									-	10				1	
	3	1	2	2	1	2	-	-	-	-	-	2	3	1	1

CO1	3	1	2	2	1	2	-	-	-	-	-	2	3	1	1
CO2	3	2	2	2	1	2	-	-	-	-	-	2	3	2	-
CO3	3	2	2	2	2	2	-	-	-	-	-	2	3	2	-
CO4	3	2	2	2	2	2	-	-	-	-	-	2	3	2	1
Average	3	1.75	2	2	1.5	2	0	0	0	0	0	2	3	1.75	0.5
Course (Course Content:														

L (Hours	s/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week							
0		0	2	2							
Unit	Content & Competencies										
1	To Study of di C1, C2	To Study of different types of batteries. C1, C2									
2	To Study Batte C1, C2	ery monitoring Systen	n for Lead acid battery.								
3	To study for passive cell balancing for Li-Ion battery. C1, C2										
4	Analysis of Electric vehicle power system. C1, C2, C3, C4										
5	To Perform SI standard. C1, C2, C3, C		action batteries (Lead-Ac	id/Li-ion) as per AIS 048							
6	standard.	To Perform Overcharge Test for traction batteries (Lead-Acid/Li-ion) as per AIS 048 standard. C1, C2, C3, C4									
7	To study Coulomb counting method for Lead-Acid battery and Li-ion battery. C1, C2, C3										
8	To Study of different types of batteries with their characteristics & detailed specifications. C1, C2, C3										

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	20	
Seminar/Journal Club		
Small Group Discussion (SGD)	4	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	6	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	30	

Formative	Summative					
Viva-voce	Practical Examination & Viva-voce					
	University Examination					

Nature of Assess	ment		CO1	CO2	CO3	CO4		
VIVA 🖌 🖌 🖌 🖌								
Practical Log Boo	cal Log Book/ Record Book 🖌 🖌 🖌							
University Exami	nation		✓	✓	✓	✓		
Feedback Proces	8		's Feedba Exit Surv					
 Regular fe Feedback 	 Students Feedback is taken through various steps Regular feedback through Mentor Mentee system. Feedback between the semester through google forms. 							
S. Course Ex References:	Electric Ve 2. James Lar Explained 3. Chris Mi,	books) inçer, Halil S. hicle Battery S rminie, John I l", John Wile	Hamut an Systems", Lowry, "] y & Sons & David	d Nader Ja JohnWile Electric V Ltd, 2003 Wenzhon	y& Sons Lt ehicle Tec 3. gGao, "Hy	td., 2016. chnology ybrid electr	ic	

				FA	CUL	TY OI	FENG	INEE	RING	AND	TECH	NOLOC	GΥ					
Name	of the	Depa	rtmer	nt		0	Compu	ter Sc	ience	Engir	neering							
Name	of the	Prog	ram			E	Bachel	or of T	Techno	ology								
Cours	e Cod	e																
Cours	e Title	9				Ι	Databa	ase Ma	anage	ment	Systems	5						
Acade	mic Y	ear				Ι	I											
Semes	ter					Г	V											
Numb	er of (Credit	S			3												
Cours	e Prei	equis	ite			A	A cours	se on '	'Data	Struct	ures"							
Cours	e Syn	opsis				0	Gain kı	nowled	dge of	funda	mentals	of DB	MS, data	base des	sign and	ļ		
						n	ormal	form.										
Cours	e Out	comes	:			1												
At the	end of	f the co	ourse s	studen	ts will	be ab	le to:											
CO1	Defi	ne the	the basic concepts of database management systems															
CO2	Abil	ity to design entity relationship model and convert entity relationship diagrams into RDBMS and																
	form	ulate S	SQL q	ueries	on the	e data												
CO3	Able	to de	monst	rate tra	ansacti	ion pro	ocessir	ng and	concu	irrenc	y contro	1						
CO4	Able	to aj	pply n	ormal	izatio	n tech	nique	for s	chema	refin	ement.	Ability	to com	pare di	fferent	storage		
	struc	tures.																
Mapp	ing of	Cours	se Out	tcome	s (CO	s) to F	Progra	ım Ou	tcome	es (PC) & P1	ogram	Specifi	c Outco	mes:			
Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO		
C08	1	2	3	4	5	6	7	8	9	10	11	10	1	2	3	4		
CO1	_					U	1	0	,	10		12			5	-		
	3	3	1	2	-	-	-	-	-	-	-	-	-	-	-	-		
CO2	3	3	-	-	-	-	-	-	-	-	-	-	1	1	-	-		
CO3	3	3	1	2	-	-	-	-	-	-	-	-	-	-	-	-		
CO4	3	3	-	-	-	-	-	-	-	-	-	-	1	1	-	-		
Aver age	3	3	0.5	1	-	-	-	-	-	-	-	-	0.5	0.5	-	-		
Cours	e Con	tent:										·		<u>.</u>		·		
L (Ho Wee				F	P (Hou	irs/Wo	eek)	CL (H	ours/V	veek)	Total	Hour/V	Veek					

3	0	0	0	3					
Unit		Content and Co	ompetency						
1	 Define Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS. (C1: Knowledge) Demonstrate Data Independence, and Structure of a DBMS. (C3: Application) Create Database: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets. (C5: Synthesis) Design with the ER Model, Additional Faculty of Engineering and Technologies of the ER Model, Conceptual. (C5: Synthesis) Define Relational Model: Integrity constraint over relations, enforcing integrity 								
2									
3	 Comprehension) 1.Demonstrate SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active data bases. (C3: Application) 2. Explain Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, multi-valued dependencies, FOURTH normal form, FIFTH normal form. (C2: Comprehension, C6: Evaluation) 								
4	 Explain Transaction Con Durability, Concurrent Execu Implementation of Isola Timestamp Based Protocols. (3. Describe Validation- Base Log–Based Recovery, Recove Explain Data on External S Define File Organization Indexes, Index data Structure File Organizations, Indexes Comprehension) 	tions, Serializabili ation, Testing for (C6: Evaluation) ed Protocols, Mult ery with Concurren torage. (C2: Com and Indexing, C es, Hash Based Ind	ty, Recoverability. (r serializability, Lo iple Granularity, Rec nt Transactions. (C2: prehension) Cluster Indexes, Pri lexing, Tree base Ind	C2: Comprehension) ock Based Protocols, covery and Atomicity, Comprehension) mary and Secondary lexing, Comparison of					

Learning Strategies and Contact Hours

Learning Strategies	Contact Hours
Lecture	30

Practical	-
Seminar/Journal Club	2
Small Group Discussion (SGD)	1
Self-Directed Learning (SDL) / Tutorial	2
Problem Based Learning (PBL)	4
Case/Project Based Learning (CBL)	2
Revision	4
Others If any:	-
Total Number of Contact Hours	45

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2
Objective Structured Clinical Examination	University Examination
(OSCE)	
Objective Structured Practical Examination	Dissertation
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Short Answer Questions (SAQ)
Problem Based Learning (PBL)	Long Answer Question (LAQ)
Journal Club	Practical Examination & Viva-voce
	Objective Structured Clinical Examination
	(OSCE)
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment	C01	CO2	CO3	CO4	
Quiz	✓	✓	✓	✓	
VIVA					
Assignment / Presentation	✓	✓	✓	✓	
Unit test	✓	✓	✓	✓	
Clinical assessment					

Clinical/Practical	Log Book/ Record Book											
Mid Semester Ex	amination 1	 ✓ 	✓	✓	✓							
Mid Semester Ex	amination 2	 ✓ 	✓	✓	✓							
University Exam	ination	✓	✓	✓	✓							
Feedback Proce	ss	1. Stu	dent's Feedt	back								
References:	Textbooks:	t Contours	D 1 1	17	hanne Calada Tru							
	1.Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata											
		McGraw Hill 3rd Edition										
		2. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.										
	References:											
		1.Database Systems design, Implementation, and Management, Peter Rob &										
	Carlos Coronel 7th Edition.											
	2. Fundamentals of Data	2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education										
	3. Introduction to Database Systems, C. J. Date, Pearson Education											
	4. Oracle for Profession	4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.										
	5. Database Systems Us	5. Database Systems Using Oracle: A Simplified guide to SQL and										
	PL/SQL,Shah, PHI.	PL/SQL,Shah, PHI.										
	6. Fundamentals of Dat	6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley										
	Student Edition											

				F	Faculty	v of E	nginee	ering a	and Teo	chnolo	gy				
Name of the Department						C	Computer Science Engineering								
Name of th	e Pro	gram				В	. Tecl	1.							
Course Co	de														
Course Tit	le					D	ataba	ase Ma	anager	nent S	ystem	s lab			
Academic	Year					Π	[
Semester						Г	V								
Number of	Cred	its				1									
Course Pro	erequi	site				D	ataba	se Ma	nagem	ent Sy	stems				
Course Synopsis							ormal ata de	izatioı finitic	n. Acq on and	uire s data r	kills in nanipu	n using lation.	g SQL Develo	tion and comman p solutions and trig	nds for ons for
Course Ou	tcome	es:												t	~
At the end	of the	course	e, stuc	lents v	will be	able	to:								
CO1	Abl	e to cl	hoose	appro	opriate	datał	base so	chema	for a g	given p	orobler	n			
CO2	Abl	e to d	esign	an E-	R mod	lel for	real v	world	proble	m					
CO3	Abl	e to d	eveloj	o relat	tional	mode	l for s	chema	refine	ment					
CO4 Mapping o	com	nmand	ls								• 			DML, I	
CO-	D	Ъ		D	D	Ъ	Ъ	DO	DO	DO	DO	DO	DCO	DCO	DEO
COs	P 0 1	P 0 2	P 0 3	P 0 4	P 0 5	P 0 6	P 0 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	3	-	-	-	-	-	-	-	-	-	3	2	1
CO2	3	3	3	-	_	-	-	-	-	-	-	-	3	2	-
CO3	3	3	3	3	3	-	-	-	-	-	-	-	3	2	-
CO4	3	3	3	3	3	-	-	-	-	-	-	-	3	2	1
Average	3	3	3	1.5	1.5	-	-	-	-	-	-	-	3	2	0.5
Course Co	ntent:														
L (I	Hours/	/Weel	x)		T (H	ours/	Week	:)	P (1	Hours	/Week)	Tota	l Hour/	Week
	0					0				2				2	
													1		

	Content & Competencies						
Sr. No.	Title						
1	Demonstrate Concept design with E-R Model. (C3: Application)						
2	Demonstrate Relational Model. (C3: Application)						
3	Demonstrate Normalization. (C3: Application)						
4	Practicing DDL commands. (C3: Application)						
5	Practicing DML commands. (C3: Application)						
6	Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT,						
	Constraints etc.) (C3: Application)						
7	Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping						
	of Views. (C3: Application)						
8	Triggers (Creation of insert trigger, delete trigger, update trigger) (C3: Application)						
9	Procedures (C3: Application)						
10	Usage of Cursor (C3: Application)						
Note:							

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	15	
Seminar/Journal Club		
Small Group Discussion (SGD)	10	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	30	

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Nature of Assessm	ient		CO1	CO1 CO2 CO3 CO4							
Quiz					✓ ✓ ✓						
VIVA			✓	✓	✓	✓					
Assignment / Prese	ntation										
Unit test				 ✓ ✓							
Practical Log Book	/ Record Book		✓								
Mid-Semester Exar	nination 1										
Mid-Semester Exar	nination 2										
University Examina	ation		✓	✓ ✓ ✓ ✓							
Feedback Process		1. Student's Fee	1. Student's Feedback								
		2. Course Exit S	urvey	rvey							
Students Feedback	is taken through vari	ous steps									
1. Regular fee	edback through the M	Ientor Mentee syste	em.								
2. Feedback b	between the semester	through google for	ms.								
	t Survey will be take	n at the end of the	semester.								
References:	Textbooks:										
	1.Database Manag	ement Systems, Rag	ghurama Krish	nan, Johar	nnes Gehrl	ke, Tata					
	McGraw Hill 3rd H	Edition									
	2. Database System	n Concepts, Silberso	chatz, Korth, N	IcGraw hi	ll, V editio	on.					

References:
1.Database Systems design, Implementation, and Management, Peter Rob &
Carlos Coronel 7th Edition.
2. Fundamentals of Database Systems, ElmasriNavrate, Pearson Education
3. Introduction to Database Systems, C. J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL,Shah,
PHI.
6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition

SEMESTER - V

Course Code	Course Title
	Kinematics of Machines
	Fluid Mechanics
	Applied Thermodynamics
	Biology for Engineers
	Program Electives Course - III
	Power Plant Engineering
	Hydrogen and Fuel Cells
	Non-Conventional Machining
	Plant Layout and Material Handling
	Industrial Safety Engineering
	SEC-III (MATLAB)
	Kinematics of Machines Lab
	Fluid Mechanics Lab
	Applied Thermodynamics Lab
	Industrial Training - I
Min	nor Elective Course-III (Robotics)
	Mechanics of Robot
	Mechanics of Robot Lab
Minor I	Elective Course-III (Electric Vehicles)
	Power train Design
	Power train Design Lab

Minor Elective Course-III (Co	omputer Science Engineering)
	Data Structure & Algorithm
	Data Structure & Algorithm Lab

]	Facu	lty o	f Eng	ginee	ering	and	Tecl	nnolog	у			
Name of the Department						Ν	Mechanical Engineering								
Name of	the Pr	ogra	m			В	B. Tec	h.							
Course C	ode														
Course T	'itle					K	Kinen	natics	of M	Iachi	nes				
Academic	c Year	•				Π	II								
Semester						V	7								
Number of	of Cre	dits				3									
Course P	rerequ	isite	!			E	Ingine	ering	Mec	hanic	s				
Course S Course O At the end	Outcon	<u>1es:</u>	rse, si	tuden	ts wil	The analysis of a machine requires the determination of t movement or kinematics of its component parts, known kinematic analysis. The assumption that the system is assembly of rigid components allows rotational a translational movement to be modelled mathematically. Th allows the position, velocity and acceleration of all points in component to determine from these properties for a referen point and the angular position, angular velocity and angula acceleration of the component. Students learn Basics Mechanisms, kinematic analysis of simple mechanism synthesis of simple mechanisms, kinematics of CAMS a kinematics of gears and gear train.						own as a is an al and y. This nts in a ference angular sics of anisms,			
CO1	Den	nonstr	rate ar	n unde	erstand	ling o	f the c	concep	ots of	variou	is mecha	nisms	and pai	rs.	
CO2	Con	duct	veloci	ty and	l accel	leratio	on ana	lysis o	of sim	ple m	echanisn	ns.			
CO3	Syn	thesiz	e sim	ple m	echani	isms f	ns for function, path generation and body guidance.								
CO4 Design a layout of cam for sp of operation of gears.					r spec	specified motion and demonstrate an understanding of principles									
Mapping Outcome		urse	Outc	omes	s (CO	s) to	Prog	ram (Outco	omes	(POs)	& Pro	ogram (Specific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO11	PO 12	PSO1	PSO2	PSO3
		1	1	2	1	_	-	-	1	-	1	3	3	2	
CO1	3	2	3	2	1							2	U	2	3
	3	2	3	3	2	1	-	-	1	1	-	2	3	3	3

CO4	3	2	2	2	2	-	1	-	-	-	1	2	3	2	2
Average	3	2.4	2.6	2.4	2.2	0.6	0.4	0.2	0.4	0.2	0.6	2.4	3	2.4	2.6
Course (Cont	ent:													
L (Hours/Week)					T (E	lours/	Week)	Р	(Hour	s/Week)		Tota	l Hour/	Week
3					0				()			3		
Unit		(Content & Competencies												
1	an over he co e Gra cker fm (C c Inv the ents of the c investions ider a e the c investions ider a e the c sms th the v cal sys- cturn a che co n the e terr peed, f Free e deg of inde	erview ncept shoff mecl 1). ersion conc of lin 4-bar ersion (C1) and D single nat inv vorkin stems and It pforwa ninol cuttir edom, gree o epend	v of r of ki 's law hanish s of ept ks in chai s, in s, in chai s, in chai s i s i s c i s i s i s i s i s c i s i s	necha inema w, wł m, c 4-Bar of k a mec n, a c cludiu er cra a slic rincip mino quick roke roke, r oility, edom notion iterio	unism utic ch nich = loubl Chai inema chani widel ng cr er Cra nk ch ling c les a logies retur (C1). ociate eturn Kutz and 1 ns it c n, w	hains states e ro in: atic sm w y use ank-ro ank C hain a or tran nd aj s: rn in strok bach nobill can ex which	their and the cker inver hile p ed me ocker hains nd do islatir pplica mech th qu ie, and Criter ity of hibit dete	import he role conditi mech sions, oreservi echanism chanisms double sl ng moti- ations of anisms nick re d dwell rion, Gr a mecl (C1). ermines	of join ons fe anism which ng the m, and le-rock lider c on (C of the turn n (C1). rubler hanism the	nts in co or the , and h refer e same r d expla ker, and erank ch 1). ese cha re the r mechan 's Criter n, whic	to di relative i in its di d double nain, wh ins in v return st isms, su cion: h repres ity of	g links e of a e-crank fferent motion fferent e-crank ich are various roke is uch as ent the			

	Introduce Grubler's criterion, which determines the degree of freedom of planar mechanisms based on the number of links, joints, and constraints (C1). Limiting Positions, Mechanical Advantage, Transmission Angle:
	Discuss limiting positions in mechanisms, which refer to extreme positions
	where certain motions or configurations are constrained (C1).
	Explain the concept of mechanical advantage, which quantifies the amplification
	of force or speed in a mechanism (C1).
	Introduce the transmission angle, which represents the angle between the input
	and output links in a mechanism (C1).
2	Displacement, Velocity, and Acceleration Analysis in Simple Mechanisms:
	Explain the concept of displacement, velocity, and acceleration analysis in
	mechanisms (C1).
	Discuss turning pairs, sliding pairs, and rolling pairs as the basic types of joints
	in mechanisms (C1).
	Illustrate the use of graphical and analytical methods to analyze the
	displacement, velocity, and acceleration of simple mechanisms (C1).
	Coriolis Acceleration using Graphical Relative Motion Method:
	Introduce the concept of Coriolis acceleration, which is the apparent acceleration
	experienced by a point on a moving link due to the rotation of the frame of
	reference (C1).
	Explain the graphical relative motion method to determine the Coriolis
	acceleration in mechanisms (C1).
	Instantaneous Center Method:
	Describe the instantaneous center method, also known as the Kennedy's theorem,
	which is used to analyze the velocity and acceleration of points in mechanisms (C1).
	Demonstrate how to find the instantaneous center of rotation for different types
	of motion in mechanisms (C1).
	Four-Bar and Slider-Crank Mechanisms:
	Discuss the kinematic analysis of the four-bar mechanism, which consists of four
	links connected by revolute joints (C1).
	Explain the analysis of the slider-crank mechanism, which includes a slider
	connected to a crank and a connecting rod (C1).
	Illustrate the displacement, velocity, and acceleration analysis of these
	mechanisms using graphical and analytical methods (C1).
	Analytical Method for Four-Bar and Slider-Crank Mechanisms:
	Present the analytical methods, such as vector algebra and complex number
	representation, for analyzing the kinematics of four-bar and slider-crank
	mechanisms (C2).
	Demonstrate the use of vector loop equations and vector algebra to derive

[equations for displacement, velocity, and acceleration (C2)										
3	Classification of Kinematic Synthesis Problems:										
	Explain the concept of kinematic synthesis, which involves designing										
	mechanisms to perform specific motion tasks (C1).										
	Discuss the classification of kinematic synthesis problems based on the type of										
	motion desired, such as path generation, function generation, and motion										
	transmission (C1).										
	Two-Position Synthesis of Slider-Crank and Crank-Rocker Mechanisms:										
	Describe the two-position synthesis, which involves designing a mechanism to										
	achieve desired positions of the links (C1).										
	Explain the procedure for synthesizing the slider-crank and crank-rocker										
	mechanisms to achieve specific positions of the slider or rocker (C1).										
	Illustrate the use of graphical and analytical methods, such as the graphical										
	method of inversion and algebraic equations, for the synthesis process (C1).										
	Three-Position Synthesis of Double Rocker Mechanism:										
	Discuss the three-position synthesis, which involves designing a mechanism to										
	achieve desired positions of multiple links (C1).										
	Explain the procedure for synthesizing the double rocker mechanism to achieve										
	specific positions of the rockers (C1).										
	Demonstrate the use of graphical methods, such as the graphical method of										
	position synthesis, for determining the dimensions and locations of the										
	mechanism components (C1).										
	Chebyshev Spacing and Freudenstein Analytical Method:										
	Introduce Chebyshev spacing, which is a method for distributing precision points										
	along a prescribed path to minimize errors (C2).										
	Explain the Freudenstein analytical method, which is used for the synthesis of										
	four-bar linkages with specific position requirements (C2).										
	Discuss how these techniques can be applied to improve the accuracy and										
	precision of mechanism designs (C2).										
	Synthesis of Function Generator using Three Precision Positions:										
	Describe the synthesis of a function generator, which is a mechanism that										
	produces a specific output function based on the input motion (C2).										
	Explain the process of designing a function generator by specifying three										
	precision positions and determining the linkage dimensions (C2).										
	Discuss the graphical and analytical methods that can be used for this synthesis										
	problem (C2).										
	Graphical and Analytical Design of a Four-Bar Linkage for Body Guidance:										
	Present the design process of a four-bar linkage for body guidance, which										
	involves designing a mechanism to guide a specific body through a desired path										
	(C2).										

-	-
	Discuss the graphical method, such as the use of a motion diagram or a position
	diagram, to determine the linkage dimensions (C2).
	Explain how analytical methods, such as vector loop equations or vector algebra,
	can be employed to solve for the dimensions and angles of the linkage (C2).
	Path Generation by Graphical Method:
	Explain the graphical method for path generation, which involves designing a
	mechanism to trace a specific path (C1).
	Describe the use of a template or tracing paper to construct the desired path and
	determine the corresponding linkage dimensions (C1).
	Illustrate the application of the graphical method to design mechanisms that
	generate complex paths (C1).
4	Types of cams and followers: (C2)
	Recognizing and distinguishing different types of cams and followers used in
	mechanical systems. (C2)
	Describing the characteristics and applications of plate or disk cams, cylindrical
	cams, conjugate cams, and globoidal cams. (C2) Differentiating between knife-edge followers, roller followers, and flat-faced
	followers. (C2)
	Definitions related to cam profiles: (C1)
	Defining and explaining terms such as base circle, pitch curve, pressure angle,
	and dwell in the context of cam profiles. (C1)
	Motion profiles for cams and followers: (C2)
	Understanding and analyzing the concepts of simple harmonic motion, constant
	acceleration and deceleration, constant velocity, and cycloidal motion. (C2)
	Describing the characteristics and applications of each type of motion in relation
	to cams and followers. (C2)
	Spur gear terminology and definitions: (C2)
	Familiarizing with and utilizing the terminology used in spur gears, such as gear
	pitch, gear module, gear pressure angle, gear addendum, and gear dedendum.
	(C2)
	Explaining the significance of each parameter in gear design and operation. (C2) Law of toothed and involute gearing: (C2)
	Understanding and applying the fundamental principle of the law of toothed
	gearing, which states the relationship between gear velocity ratio and the number
	of teeth. (C2)
	Explaining the concept of involute tooth profile and its advantages in gear
	meshing. (C2)
	Interchangeable gears: (C1)
	Understanding the concept of interchangeable gears and their role in
	standardization. (C1)
	Recognizing the importance of manufacturing gears to specific standards for
	compatibility and interchangeability. (C1)
	Gear tooth action, interference, and undercutting: (C2)
	Describing and analyzing the interaction and motion between gear teeth during
	meshing. (C2)

Identifying the conditions of interference and undercutting in gear teeth and
evaluating their impact on gear performance. (C2)
Basics of nonstandard gear teeth: (C2)
Understanding and applying the concept of nonstandard gear teeth and their
deviation from standard involute profiles. (C2)
Exploring different types of nonstandard gear teeth and evaluating their
applications. (C2)
Helical, Bevel, Worm, Rack and pinion gears: (C2)
Distinguishing and classifying helical gears, bevel gears, worm gears, and rack
and pinion gears. (C2)
Describing the principles, advantages, and applications of each type of gear
system. (C2)
Cycloidal tooth properties: (C3)
Understanding and analyzing the unique properties and advantages of cycloidal
tooth profiles in gear systems. (C3)
Evaluating the characteristics and benefits of cycloidal gears, such as higher
tooth contact ratio and smoother operation. (C3)
Comparison of involute and cycloidal tooth forms: (C3)
Analyzing and evaluating the characteristics, advantages, and disadvantages of
involute and cycloidal tooth forms in gear design and performance. (C3)

Teaching - Learning Strategies	Contact Hours
Lecture	25
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term

Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assess	ment		CO1	CO2	CO3	CO4			
Quiz									
VIVA									
Assignment / Pres	entation		 ✓ 	✓	✓	 ✓ 			
Unit test									
Practical Log Boo	k/ Record Book								
Mid Semester Exa	amination 1		 ✓ 	✓	 ✓ 	 ✓ 			
Mid Semester Exa	amination 2		 ✓ 	✓	✓	✓			
University Examination	nation		 ✓ 	✓	✓	✓			
Feedback Proces	S	1. Student's Fe	Student's Feedback						
		2. Course Exit	Course Exit Survey						
 Regular feedb Feedback betv 	k is taken through various a ack through Mentor Mente veen the semester through urvey will be taken at the e	e system. google forms.							
References:	(List of reference books))							
	 i) A. Ghosh (2009), Theor West Press Pvt. Ltd., New ii) Thomas Bevan (2009), ISBN: 978-8-131-72965-6 	Delhi, ISBN: 978-8 Theory of Machine	8-185-93	893-6.					

			I	Facul	lty o	f Eng	Engineering and Technology									
Name of t	he De	part	ment			N	Mechanical Engineering									
Name of t	he Pr	ogra	m			В	B. Tec	h.								
Course Co	ode															
Course Ti	tle					F	luid	Mech	anics							
Academic	Year	•				Π	Ι									
Semester						V	7									
Number o	f Cre	dits				3										
Course Pr	erequ	ıisite				E	ngine	ering	Maths	& Eng	ineerir	ng Meo	chanics			
Course Synopsis						n li o th fl th	Fluid mechanics and machinery is a branch of continuum mechanics that deals with the behavior of fluids (gases or liquids) either in motion or at rest and the subsequent effects of fluids upon boundaries, which may be either solid surfaces or interfaces with other fluids. This course deals fluids and their properties, and the kinematics and dynamics of fluid flow. After that students learn the fundamentals of flow through pipes, turbulent flow, dimensional analysis and boundary layers and their applications in engineering.									
Course On At the end			rse, st	tuden	ts wil	l be a	ble to):								
CO1	Und	lerstai	nd the	funda	ament	al mo	models for analyzing a fluid flow and fluid at rest both.									
CO2	Finc	the d	lepend	dent a	nd inc	lepend	endent parameters for a fluid flow.									
								ilable for boundary layer separation and analyze the model and								
CO4	incipl	es of t	turbin	es and	pumps	5.										
Mapping Outcomes		urse	Outc	omes	(CO	s) to	Prog	ram (Outco	mes (POs)	& Pro	ogram S	Specific		
			1	DO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	-	
COs	PO 1	PO 2	PO 3	PO 4	FU 5	6	7	8	9	10	11	12	1501	P502	PSO3	

CO2 3	2	2	2	1	1	1	1	1	1	1	2	1	3	3
CO3 3	2	2	2	1	1	1	1	1	1	1	2	1	3	3
CO4 3	3	3	3	3	1	1	1	1	1	1	3	1	3	2
Average 3	2.2 5	2.2 5	2.2 5	1.5	1	1	1	1	1	1	2.5	0.75	3	2.25
Course Cont	ent:													
L (Hours/Week) T (Hours/Week) P (Hours/Week) Total Hour/W											Week			
3					0				0				3	
Unit		Conte	ent &	k Con	ipete	encies	;					1		
	 Introduction to Fluid Mechanics: Provide an overview of fluid mechanics as a branch of physics that deals with the study of fluids (liquids and gases) and their behavior under various conditions (C1). Explain the importance of fluid mechanics in understanding and analyzing fluid flow in engineering applications (C1). Fluid Types and Properties: Define fluid properties such as density, viscosity, surface tension, compressibility, and capillarity (C1). Discuss the significance of these properties in characterizing and describing fluid behavior (C1). Differentiate between different types of fluids, including liquids and gases (C1). Fluid Statics: Introduce fluid statics, which deals with the equilibrium of fluids at rest (C1). Discuss hydrostatic forces exerted by fluids on various surfaces, including plane, inclined, and curved surfaces (C1). Explain concepts such as pressure, buoyancy, center of buoyancy, and metacenter (C1). Fluid Kinematics: Explain fluid kinematics, which focuses on the study of fluid motion without considering the forces acting on it (C1). Define streamline and velocity potential lines as visualization tools to represent fluid flow gatterns (C1). Introduce stream function and potential function as mathematical representations of fluid motion (C1). 													

 Define steady flow as flow in which the fluid properties do not change with time, and unsteady flow as flow in which the fluid properties vary with time (C1). Differentiate between uniform and non-uniform flow based on the constancy of fluid velocity (C1). Introduce rotational flow, characterized by the presence of vortices or rotating motion in the fluid (C1). Define irrotational flow as flow without any rotation (C1). Explain the concepts of 1-D (one-dimensional), 2-D (two-dimensional), and 3-D (three-dimensional) flows based on the spatial dimensions involved in the flow (C1) Surface and Body Forces: Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Cl		
 (C1). Differentiate between uniform and non-uniform flow based on the constancy of fluid velocity (C1). Introduce rotational flow, characterized by the presence of vortices or rotating motion in the fluid (C1). Define irrotational flow as flow without any rotation (C1). Explain the concepts of 1-D (one-dimensional), 2-D (two-dimensional), and 3-D (three-dimensional) flows based on the spatial dimensions involved in the flow (C1) 2 Surface and Body Forces: Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces) shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, which describe the motion of viscous fluids (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to urbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Differentiate between uniform and non-uniform flow based on the constancy of fluid velocity (C1). Introduce rotational flow, characterized by the presence of vortices or rotating motion in the fluid (C1). Define irrotational flow as flow without any rotation (C1). Explain the concepts of 1-D (one-dimensional), 2-D (two-dimensional), and 3-D (three-dimensional) flows based on the spatial dimensions involved in the flow (C1) Surface and Body Forces: Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-		
 fluid velocity (C1). Introduce rotational flow, characterized by the presence of vortices or rotating motion in the fluid (C1). Define irrotational flow as flow without any rotation (C1). Explain the concepts of 1-D (one-dimensional), 2-D (two-dimensional), and 3-D (three-dimensional) flows based on the spatial dimensions involved in the flow (C1) 2 Surface and Body Forces: Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to urbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a <!--</td--><td></td><td></td>		
 Introduce rotational flow, characterized by the presence of vortices or rotating motion in the fluid (C1). Define irrotational flow as flow without any rotation (C1). Explain the concepts of 1-D (one-dimensional), 2-D (two-dimensional), and 3-D (three-dimensional) flows based on the spatial dimensions involved in the flow (C1) 2 Surface and Body Forces: Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 motion in the fluid (C1). Define irrotational flow as flow without any rotation (C1). Explain the concepts of 1-D (one-dimensional), 2-D (two-dimensional), and 3-D (three-dimensional) flows based on the spatial dimensions involved in the flow (C1) Surface and Body Forces: Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Define irrotational flow as flow without any rotation (C1). Explain the concepts of 1-D (one-dimensional), 2-D (two-dimensional), and 3-D (three-dimensional) flows based on the spatial dimensions involved in the flow (C1) Surface and Body Forces: Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes, (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Explain the concepts of 1-D (one-dimensional), 2-D (two-dimensional), and 3-D (three-dimensional) flows based on the spatial dimensions involved in the flow (C1) Surface and Body Forces: Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
(three-dimensional) flows based on the spatial dimensions involved in the flow (C1) 2 Surface and Body Forces: Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which r		• • • •
 (C1) 2 Surface and Body Forces: Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 2 Surface and Body Forces: Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Ravier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		_
 Explain the concept of surface forces, which act on the boundary of a fluid, and body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 body forces, which act throughout the volume of a fluid (C1). Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 	2	
 Provide examples of surface forces (e.g., pressure forces, shear forces) and body forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 forces (e.g., gravitational force, electromagnetic force) (C1). Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Euler and Bernoulli's Equations: Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Introduce Euler's equation, which describes the relationship between pressure, velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 velocity, and elevation in a fluid (C2). Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Explain Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		Introduce Euler's equation, which describes the relationship between pressure,
 of a fluid along a streamline (C2). Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Discuss the assumptions and applications of these equations, such as in analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 analyzing flow in pipes, nozzles, and other fluid flow devices (C2). Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Momentum Equation: Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Present the momentum equation, which relates the rate of change of momentum to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		analyzing flow in pipes, nozzles, and other fluid flow devices (C2).
 to the forces acting on a fluid (C2). Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Discuss the conservation of momentum principle and its applications in fluid dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 dynamics (C2). Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Navier-Stokes Equations: Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		Discuss the conservation of momentum principle and its applications in fluid
 Introduce the Navier-Stokes equations, which describe the motion of viscous fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 fluids (C2). Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		-
 Explain the terms in the equations, including the convective term, pressure gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		-
 gradient term, and viscous term (C2). Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
 Discuss the importance of the Navier-Stokes equations in solving complex fluid flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a 		
flow problems (C2). Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a		
Closed Conduit Flow: Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a		
Describe Reynolds' experiment, which demonstrated the transition from laminar to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a		
to turbulent flow in pipes (C2). Introduce the Darcy-Weisbach equation, which relates the frictional losses in a		
Introduce the Darcy-Weisbach equation, which relates the frictional losses in a		
· ·		
pipe to the flow rate and pipe characteristics (C2).		Introduce the Darcy-Weisbach equation, which relates the frictional losses in a
		pipe to the flow rate and pipe characteristics (C2).

	
	Discuss minor losses in pipes, such as those caused by bends, fittings, and
	valves (C2).
	Explain the concept of pipes in series and parallel and how it affects the total
	flow rate and pressure (C2).
	Introduce the concepts of the total energy line and hydraulic gradient line in
	pipe flow analysis (C2).
	Measurement of Flow:
	Discuss different methods for measuring flow rate, including the Venturi meter,
	orifice meter, and Pitot tube (C2).
	Explain the operating principles and applications of these flow measurement
	devices (C2).
3	Compressible Flows:
	Provide an introduction to compressible flows, which occur when the density
	changes significantly due to changes in pressure and temperature (C1).
	Discuss the thermodynamic relations of perfect gases, including equations
	relating pressure, density, temperature, and specific heat (C1).
	Explain concepts such as internal energy and enthalpy in relation to
	compressible flows (C1).
	Introduce the speed of sound, which represents the maximum velocity at which
	disturbances can propagate through a compressible fluid (C1).
	Discuss the pressure field created by a moving source in a compressible fluid
	(C1).
	Present the basic equations for one-dimensional flow, including the continuity
	equation, momentum equation, and energy equation (C2).
	Explain the concepts of stagnation properties and sonic properties in
	compressible flows (C2).
	Introduce normal and oblique shocks, which are abrupt changes in flow
	properties caused by compression waves (C2).
	Introduction to CFD:
	Discuss the necessity of Computational Fluid Dynamics (CFD) as a numerical
	tool for solving fluid flow problems (C2).
	Explain the limitations of CFD, such as assumptions and simplifications made
	in the numerical models (C2).
	Present the philosophy behind CFD, including the discretization of equations,
	mesh generation, and solution algorithms (C2).
	Provide examples of applications of CFD in various fields, such as aerospace,
	automotive, and environmental engineering (C2)
4	Boundary Layers:
	Explain the concept of boundary layers, which are thin layers of fluid that form
	near solid boundaries due to the effects of viscosity (C1).

Discuss the differences between laminar flow and turbulent flow within
boundary layers (C1).
Describe the boundary layer thickness and its variation along a surface (C1).
Introduce the momentum integral equation, which relates the momentum
thickness and the boundary layer displacement thickness (C2).
Discuss the drag and lift forces acting on bodies in a flow, which are influenced
by the properties of the boundary layer (C2).
Explain the phenomenon of boundary layer separation, where the flow separates
from the surface and leads to changes in flow behavior (C2).
Present methods used to control or delay boundary layer separation, such as
using boundary layer control devices (C2).
Dimensional Analysis and Model Laws:
Introduce the concept of dimensional homogeneity, which states that equations
must have consistent dimensions on both sides (C1).
Explain the Raleigh and Buckingham pi theorems, which are used in
dimensional analysis to reduce the number of variables in a problem (C2).
Discuss non-dimensional numbers, such as Reynolds number, Froude number,
and Mach number, which provide information about the flow characteristics
(C2).
Explain the concept of model laws and distorted models, which are used to
study fluid flow phenomena in a scaled-down or distorted form (C2).
Discuss the use of module quantities, which are non-dimensional ratios used to
compare different physical systems (C2).
Explain specific quantities, which are non-dimensional ratios used to compare
properties of fluids, such as specific heat and viscosity (C2).
properties of metals, such as specific near and (iscosity (02))

Teaching - Learning Strategies	Contact Hours	
Lecture	30	
Practical		
Seminar/Journal Club	5	
Small Group Discussion (SGD)		
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision	5	

Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz				
VIVA				
Assignment / Presentation	✓	~	~	✓
Unit test				
Practical Log Book/ Record Book				
Mid Semester Examination 1	✓	✓	✓	✓
Mid Semester Examination 2	✓	✓	✓	✓
University Examination	✓	✓	✓	✓

Feedback Process		1. Student's Feedback						
		2. Course Exit Survey						
Students Feedback	is taken the	rough various steps						
1. Regular feedba	ck through	Mentor Mentee system.						
2. Feedback betwee	een the sem	nester through google forms.						
3. Course Exit Su	rvey will be	e taken at the end of semester.						
References:	(List of re	ference books)						
	i) R. K. Bansal (2010), A Textbook of Fluid Mechanics and Hydraulic							
		Machines, 9th Edition, Laxmi Publication (P) Ltd. New Delhi.						
		ISBN- 978-8-131-80815-3.						
	ii) Yunus A. Çengel (2010), Fluid Mechanics, Tata McGraw Hill,							
		ISBN: 978-0-070-70034-5.						
	iii)	Frank M. White (2011), Fluid Mechanics, 7th edition, Tata						
		McGraw-Hill Education, ISBN-978-0-071-33312-2.						

	Faculty of	Engineering and Technology					
Name of	the Department	Mechanical Engineering					
Name of	the Program	B. Tech.					
Course (Code						
Course 7	Title	Applied Thermodynamics					
Academi	c Year	III					
Semester	•	V					
Number	of Credits	3					
Course F	Prerequisite	Engineering Thermodynamics					
Course Synopsis		Thermodynamics is a subject of fundamental interest to Mechanical engineers and therefore is always taught in the 2nd or 3rd semester. Present course can be viewed as the next step, where the thermodynamic principles will be employed to discuss about different power producing & absorbing cycles. Properties of pure substance will be discussed, along with the thermodynamic property relations, thereby enabling the participants to estimate all relevant thermodynamic properties at any particular state of point. Subsequently the gas & vapor power cycles will be analyzed, followed by the principles of cogeneration & combined cycles. Then the refrigeration cycles will be introduced, followed by a discussion on the selection of refrigerants. The properties of gas mixtures and gas vapour mixtures will also be discussed, leading to psychrometry & psychrometric processes. The course will be completed with a brief introduction to the chemical equilibrium.					
Course (Dutcomes:						
At the en	d of the course students will	be able to:					
CO1	To understand the working	ng of compressors and power cycles.					
CO2	To learn the basics of rec	iprocating engines and combustion cycles.					

CO2	To learn the basics of reciprocating engines and combustion cycles.
CO3	To understand vapor absorption and compression refrigeration cycle.
CO4	To learn the fundamentals of turbomachinery.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes:

COs	PO	РО	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	2	1	1	1	0	0	0	0	2	0	3	3
CO2	3	2	3	3	2	2	2	1	0	0	0	3	1	3	2
CO3	3	3	3	2	2	1	2	0	0	1	0	2	1	3	3
CO4	3	2	2	2	2	1	0	0	0	0	1	3	2	3	2
Average	3	2.25	2.75	2.25	1.75	1.25	1.25	0.25	0	0.25	0.25	2.5	1	3	2.5

Course Content:

L (He	ours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week				
	3	0	0	3				
Unit	nit Content & Competencies							
1	Refreshing an including the (C1) Air standard of Understandin cycles, includ Constructing each cycle. (C Evaluating th cycles. (C2) Comparison of Comparing an principles, fu Analyzing the mean effectiv Gas turbine (C Describing an thermodynam Explaining th including cor Evaluating th Regenerative Understandin heat exchang Analyzing the and performa	laws of thermodyna cycles: (C2) g and analyzing the ling the Carnot, Otto p-v (pressure-volum C2) e efficiencies and m of Otto and Diesel cy nd contrasting the O el combustion proce e differences in p-v a ve pressures. (C3) Brayton) cycle: (C2) nd analyzing the Bra nic cycle for gas turb ne components and p npression, combusti e efficiency and per gas turbine cycle: (C2) and explaining the e in gas turbine cycle e benefits and effect nce. (C3)	damental concepts of the mics and basic thermody characteristics and operato b, Diesel, Dual, and Stirlin ne) and T-s (temperature- ean effective pressures of ycles: (C3) tto and Diesel cycles in te sses, and efficiency. (C3) and T-s diagrams, as well yton cycle, which is the i bines. (C2) processes involved in the g on, expansion, and exhau formance of the Brayton of C3) e concept and implemental	namic properties. tion of air standard ng cycles. (C2) entropy) diagrams for the air standard erms of their working as the effects on dealized gas turbine cycle, st. (C2) cycle. (C2) tion of regenerative				

	Describing the concepts and applications of inter-cooling and reheating in gas turbine cycles. (C3)
	Analyzing the effects of inter-cooling and reheating on cycle efficiency,
	temperature, and specific work output. (C3)
	Jet propulsion: (C1)
	Introducing the principles and fundamentals of jet propulsion systems. (C1)
	Exploring the basic operation and components of jet engines, including air
	intake, compression, combustion, and exhaust. (C1)
	Understanding the principles of thrust generation and the basic performance
	parameters of jet engines. (C1)
2	Vapour Power Cycles: (C2)
	Studying the Carnot vapour power cycle and its limitations as a reference cycle
	for practical applications. (C2)
	Analyzing the Simple Rankine cycle, including its description, T-s diagram, and
	performance analysis. (C2)
	Comparing and contrasting the Carnot and Rankine cycles in terms of their
	efficiencies and characteristics. (C2)
	Investigating the effects of pressure and temperature variations on the
	performance of the Rankine cycle. (C2)
	Actual vapour power cycles: (C3)
	Examining the characteristics and performance of actual vapour power cycles,
	taking into account real-world considerations and limitations. (C3)
	Ideal and practical regenerative Rankine cycles: (C3)
	Understanding the principles and characteristics of ideal and practical
	regenerative Rankine cycles. (C3)
	Analyzing the impact of open and closed feed water heaters on the efficiency
	and performance of the Rankine cycle. (C3)
	Reheat Rankine cycle: (C3)
	Exploring the concept and implementation of the reheat Rankine cycle, which
	involves multiple stages of expansion and reheat. (C3)
	Analyzing the advantages and effects of the reheat process on cycle efficiency.
	(C3) Characteristics of an Ideal working fluid in Vanour power avalas: (C2)
	Characteristics of an Ideal working fluid in Vapour power cycles: (C2)
	Identifying and discussing the desirable characteristics of an ideal working fluid
	for vapour power cycles. (C2)
	Evaluating the performance and efficiency implications of different working
	fluids. (C2)
	Binary Vapour cycles: (C3)
	Understanding the concept of binary vapour cycles, which involve the use of
	two different working fluids in the power cycle. (C3)
	Analyzing the advantages and applications of binary vapour cycles. (C3)
3	Combustion Thermodynamics: (C3)
	Understanding the concept of theoretical (stoichiometric) air for the combustion
	of fuels and its significance in the combustion process. (C3)
	Analyzing the concept of excess air and its impact on combustion efficiency.
	(C3)

r	
	Exploring the mass balance and exhaust gas analysis in combustion processes,
	including the determination of air-fuel ratio. (C3)
	Investigating the energy balance for chemical reactions, including the
	calculation of enthalpy of formation, enthalpy, and internal energy of
	combustion. (C3)
	Evaluating the combustion efficiency and its relation to the overall performance
	of combustion systems. (C3)
	Examining the concepts of dissociation and equilibrium in combustion
	processes and their effects on emissions. (C3)
	I.C. Engines: (C3)
	Classifying internal combustion (IC) engines based on their operating principles
	and characteristics. (C3)
	Understanding the combustion process in spark ignition (SI) engines and
	compression ignition (CI) engines. (C3)
	Analyzing the factors affecting detonation in SI engines and its impact on
	engine performance. (C3)
	Conducting performance analysis of IC engines, including heat balance
	calculations and Morse test evaluations. (C3)
	Exploring IC engine fuels, their ratings, and the use of alternate fuels in IC
	engines. (C3)
4	Refrigeration Cycles: (C3)
	Understanding the working principles of vapor compression refrigeration
	systems, including the description, analysis, and refrigerating effect. (C3)
	Analyzing the performance parameters of refrigeration systems such as
	capacity, power required, units of refrigeration, and coefficient of performance
	(COP). (C3)
	Examining different refrigerants and their desirable properties, as well as
	alternative refrigerants. (C3)
	Conducting a case study on a cold storage or industrial refrigerator to
	understand the practical application of refrigeration systems. (C4)
	Exploring air cycle refrigeration systems, including the reversed Carnot cycle,
	reversed Brayton cycle, and vapor absorption refrigeration system. (C3)
	Investigating steam jet refrigeration and its operation in cooling applications.
	(C3) Developmentation and Alia conditioning Sectors (C2)
	Psychrometrics and Air-conditioning Systems: (C3)
	Understanding the properties of atmospheric air and the psychometric properties
	of air, including temperature, humidity, and specific volume. (C3)
	Analyzing air-conditioning processes such as heating, cooling,
	dehumidification, humidification, and evaporative cooling using psychrometric
	charts. (C3)
	Examining the concept of adiabatic mixing of two moist air streams and its
	impact on air-conditioning systems. (C3)
1	Exploring the operation and function of cooling towers in air-conditioning
	Exploring the operation and function of coording towers in an-conditioning
	systems. (C3)

Teaching - Learning Strategies	Contact Hours
Lecture	26
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	2
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Teaching - Learning Strategies and Contact Hours

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment	CO1	CO2	CO3	CO4

Quiz				
VIVA				
Assignment / Presentation	✓	✓	✓	✓
Unit test				
Practical Log Book/ Record Book				
Mid Semester Examination 1	✓	✓	✓	✓
Mid Semester Examination 2	✓	✓	✓	✓
University Examination	✓	✓	✓	✓
Feedback Process	1. Stuc	lent's Fee	edback	
	2. Cou	rse Exit S	Survey	
Students Feedback is taken through various	-			
1 Decular feedbook through Monton Monto	a aviatama			

1. Regular feedback through Mentor Mentee system.

2. Feedback between the semester through google forms.

3. Course Exit Survey will be taken at the end of semester.

References:

i) R.K Rajput, Applied Thermodynamics, Laxmi Publications; Second edition (1 January 2016),

ISBN-13: 978-8131805831

ii) Moran, Shapiro, Boettner, Bailey, Fundamentals of Engineering Thermodynamics, Wiley Publication, ISBN 978-1118412930

Norre 64			F	Facul	lty of	f Eng	ginee	ring	and	Fechr	lolog	У						
name of t	he Depa	artn	nent			Ν	Iecha	nical	Engin	eering	5							
Name of t	he Prog	gran	1			В	B. Tec	h.										
Course Co	ode																	
Course Ti	tle					В	Biology for Engineers											
Academic	Year					I	I											
Semester						V	7											
Number o	of Credi	its				3												
Course Pr	erequis	site				N	lil											
	Synopsis It is well known that this is the century of biology in whisignificant advances in the understanding and application biological systems are expected. The significant impact the world is expected in terms of better healthcare, bet processes, better products and an overall better quality of li Thus, any person can be interested in knowing fundamentals of biology to be able to understand, participate in the biological revolution. For example, a engineer, irrespective of the parent discipline (mechanic electrical, civil, chemical, metallurgical, etc.,) has a his probability of using the disciplinary skills toward esigning/improving biological systems in the future. T course is designed to convey the essentials of cell a molecular biology to provide a frame-work for more speci								tion of bact on better of life. ng the nd, or le, any hanical, a high toward e. This ell and									
Course O	utcome	s:																
Course O																		
At the end	of the c	cours	se, st	uden	ts wil	l be a	ble to):										
			-						engine	ering j	perspec	ctive						
At the end	Under	rstanc	d the	biolo	gical	conce	pts fro	om an	_		perspec							
At the end CO1	Under Under	rstanc rstanc	d the d the	biolo conce	gical of	conce f biolo	pts fro ogical	om an sensir	ig and	its cha	_	5	n					
At the end CO1 CO2	Under Under Under	rstanc rstanc rstanc	d the d the d dev	biolo conce elopn	gical of epts of nent o	conce f biolc f artif	pts fro ogical icial s	om an sensir ystem	ng and	its cha icking	llenge	s action						
At the end CO1 CO2 CO3	Under Under Under Integr	rstanc rstanc rstanc rstanc	d the d the d dev iolog	biolo conce elopn ical p	gical of epts of nent o princip	conce f biolo f artif les fo	pts fro ogical icial s r deve	om an sensir ystem eloping	ng and s mim g next	its cha icking genera	llenges humar	s n action chnolo	ogies	Specific				
At the end CO1 CO2 CO3 CO4 Mapping	Under Under Under Integr of Court :: PO	rstanc rstanc rstanc rstanc rate b rse C	d the d the d dev iolog	biolo conce elopn ical p	gical of epts of nent o princip	conce f biolo f artif les fo	pts fro ogical icial s r deve	om an sensir ystem eloping	ng and s mim g next	its cha icking genera	llenges humar	s n action chnolo	ogies	Specific PSO2	PSO3			

CO2	3	2	3	2	1	1	1	1	1	1	1	2	1	3	3
CO3															
	3	2	2	2	1	1	1	1	1	1	1	2	2	3	3
CO4	3	3	3	3	3	1	1	1	1	1	1	3	1	3	2
Average	3	2.25	2.25	2.25	1.5	1	1	1	1	1	1	2.5	0.75	3	2.25
Course (Cont	ent:													
L (1	Hours	/Week	:)		T (H	lours/	Week)	P (Hours	/Week))	Total	Hour/	Week
	3					0				0				3	
Unit		(Cont	ent &	c Con	ipete	encies								
		(C1) Rec Bio- Exp insp tech Und burr by h Role Rec and Und deve and Cell Und men Rec and Cell Exp diffe) ogniz luctic Inspi loring iratio nolog lerstat s), so umar e of E ogniz innov lerstat elop a biom Strue lerstat nbran ogniz their Pote loring erence	ing the on, eco red In g the o on from gies o nding lar pa anat Biolog ing the vation nding dvan imicr cture: nding the distin ntial a g the o e acro nding	ne imposyste overti- conce m bio r proc g exan anels comy) y in I ne sig y in I ne sig to (C2 how ced te y (C1) g the b toplas ne diff nguish and A conce	pact of em profilogic logic lucts nples (insp (insp (insp . (C2 Next nifica) biolo echno 2) pasic m, nu feren ing f action pt of cell n genera	of life reserv (C2) bio-i al sys (C2) of bi- ired b) Generation ogical ologie struct t type reature reature cell pre- nembra	scien ation, nspire tems o-insp y pho ration le of t princ s, suc ure ar s, and s of c es. (C ntial: cane. (and p	ce res and t and ap dired in tosym Techn biolog iples a h as b nd con organ ells (e 1) (C2) ial, wl C2) ropaga	earch echno ention pplyin nventi thesis y in sl and pr ioinfo npone eelles. e.g., pr hich re ation o	on hu logica s, whi g it to ions, s), and y Deve haping rocesse ormatic nts of (C1) rokary efers t	man h l adva ch inv the do uch as artific elopm g the fi es can cs, ger a cell otic an otic an	, and bid health, fa ncemer volve tal evelopm s Velcro ial limb ent: (C2 uture of be harr hetic eng , includi nd euka electrica	ood hts. (C1 cing hent of (inspin os (inspin os (inspin s) (inspin techno hessed t gineerin ing the ryotic c al poten) new red by ired logy o ng, cell cells) tial

	Understanding the electrocardiogram (ECG) as a common diagnostic tool used to measure the electrical activity of the heart. (C1) Recognizing the role of sodium ions in generating action potentials in cardiac muscle cells, as well as their involvement in nerve cell signaling and other
	physiological processes. (C2)
2	Potassium Channels: (C2)
	Understanding the role of potassium channels in regulating the flow of
	potassium ions across the cell membrane. (C2)
	Recognizing the importance of potassium channels in maintaining the resting
	membrane potential and contributing to the repolarization phase of action
	potentials. (C2)
	Neuron Function: (C1)
	Understanding the basic structure and function of neurons, which are
	specialized cells responsible for transmitting electrical signals in the nervous
	system. (C1)
	Recognizing the different components of a neuron, including the dendrites, cell
	body, axon, and synapses. (C1)
	Central Nervous System: (C1)
	Understanding the central nervous system (CNS) as the part of the nervous
	system that includes the brain and spinal cord. (C1)
	Recognizing the role of the CNS in processing and integrating sensory
	information, coordinating motor responses, and regulating various bodily
	functions. (C1)
	Evolution of Artificial Neural Networks: (C2)
	Exploring the historical development and evolution of artificial neural networks
	(ANNs) as computational models inspired by biological neural networks. (C2)
	Understanding how ANNs are designed to mimic the structure and function of
	biological neurons to perform tasks such as pattern recognition, prediction, and
	decision-making. (C2)
	Machine Learning Techniques: (C1, C2)
	Understanding the basic concepts and techniques of machine learning, which is
	a field of study focused on developing algorithms that enable computers to learn
	and make predictions or decisions without explicit programming. (C1, C2)
	Recognizing common machine learning techniques such as supervised learning,
	unsupervised learning, and reinforcement learning, as well as their applications
	in various domains. (C1, C2)
3	Sense Organs Working: (C1)
	Understanding the basic functioning of sense organs such as the eyes, ears,
	nose, tongue, and skin. (C1)
	Recognizing how these sense organs receive and process sensory information
	from the environment. (C1)
	Sensing Mechanisms: (C1)
	Understanding the different mechanisms by which sensory organs detect and
	convert various stimuli into electrical signals. (C1)
	Recognizing the role of specialized cells, receptors, and neural pathways in the
	sensing process. (C1)

	Sensor Davalarment Jaman (C2)
	Sensor Development Issues: (C2)
	Exploring the challenges and considerations involved in developing sensors for
	different applications. (C2)
	Understanding factors such as sensitivity, selectivity, response time, and
	reliability that impact sensor performance. (C2)
	Digital Camera and Eye Comparison: (C2)
	Comparing the functioning of a digital camera with the human eye in terms of
	capturing and processing visual information. (C2)
	Understanding the similarities and differences between the mechanisms of
	image formation and processing in cameras and the human visual system. (C2)
	Electronic Nose: (C2)
	Understanding the concept of an electronic nose, which is a device designed to
	mimic the sense of smell by detecting and analyzing odorant molecules. (C2)
	Recognizing the applications of electronic noses in areas such as food quality
	control, environmental monitoring, and medical diagnostics. (C2)
	Electronic Tongue: (C2)
	Understanding the concept of an electronic tongue, which is a device designed
	to mimic the sense of taste by analyzing the chemical composition of
	substances. (C2)
	Recognizing the applications of electronic tongues in fields such as food and
	beverage industry, pharmaceuticals, and environmental analysis. (C2)
	Electronic Skin: (C2)
	Understanding the concept of electronic skin or e-skin, which is a flexible and
	stretchable sensor system designed to mimic the sense of touch. (C2)
	Recognizing the potential applications of electronic skin in fields such as
4	robotics, prosthetics, and human-machine interfaces. (C2)
4	Physiological Assist Device: Artificial Organ Development (C3)
	Understanding the concept of physiological assist devices, which are artificial
	devices designed to support or replace the function of specific organs in the
	human body. (C3)
	Recognizing the significance of artificial organ development in improving the
	quality of life and survival rates for patients with organ failure. (C3)
	Kidney, Liver, Pancreas, and Heart Valve Development: (C3)
	Exploring the challenges and complexities involved in the design and
	development of artificial kidneys, livers, pancreas, and heart valves. (C3)
	Understanding the anatomical and physiological considerations specific to each
	organ and the unique design requirements for their artificial counterparts. (C3)
	Design Challenges: (C4)
	Identifying the key design challenges associated with developing artificial
	organs, such as biocompatibility, functionality, durability, and long-term
	reliability. (C4)
	Understanding the importance of integrating the artificial organ seamlessly into
	the recipient's body to ensure proper functioning and minimize complications.
	(C4)
	Technological Developments: (C4)
	Exploring the latest technological advancements in the field of artificial organ
L	

development, such as tissue engineering, biomaterials, 3D printing, and
regenerative medicine. (C4)
Recognizing how these advancements are improving the performance,
functionality, and compatibility of artificial organs, leading to better patient
outcomes. (C4)

Teaching - Learning Strategies	Contact Hours
Lecture	30
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)

Practical Examination & Viva-voce
Objective Structured Practical Examination
(OSPE)

Nature of Assessm		CO1	CO2	CO3	CO4		
Quiz							
VIVA							
Assignment / Prese	entation		✓	✓	✓	✓	
Unit test							
Practical Log Bool	k/ Record Book						
Mid Semester Exa	mination 1		✓	✓	✓	✓	
Mid Semester Exa	mination 2		✓	 ✓ 	 ✓ 	 ✓ 	
University Examin	nation		✓	 ✓ 	✓	 ✓ 	
Feedback Process	8	1. Student's Fe	edback				
		2. Course Exit	Exit Survey				
 Regular feedba Feedback betw Course Exit Su 	t is taken through various and through Mentor Menter were the semester through urvey will be taken at the e	e system. google forms. end of semester.					
References:	(List of reference books)						
	 i) Biology for Engineers by Nazeer R.A., Thilagaraj W New Delhi, ISBN: 112143 ii) Biology for Engineers, 8126576340. iii) Biology for Engineers edition, May 2019, ISBN: 	7., Barathi S., and Ja 39934 by Wiley Editorial by G. K. Suraishku	aganthan (Author),	M.K., Ta January	ta McGra 2018, ISI	aw-Hill, BN:	

			I	Facul	lty of	f Eng	ginee	ring	and 7	Fechn	olog	у							
Name of th	ne De	parti	ment			N	Iecha	nical	Engin	eering	5								
Name of th	ne Pr	ograi	m			В	B. Tech.												
Course Code																			
Course Tit	tle					P	ower	Plan	t Eng	ineeri	ng								
Academic Year						II	Ι												
Semester						V	r												
Number of	f Cre	dits				3													
Course Pr	erequ	iisite				E	ngine	ering	Therr	nodyn	amics								
Course Sy Course Ou At the end	itcom	nes:	rse, st	uden	ts wil	Power Plant Engineering course is concerned with the types, construction, working principles and performance of various conventional and non-conventional power plants. This course covers the design, construction, operations and performance of various components of steam, gas turbine, nuclear, hydra and diesel power plants. The course also focuses on various sub components of power plants, such as steam generators, condensers, cooling towers, fuel and air handling system, super-heaters, inter-coolers, re-heaters and waste handling systems; to have a proper understanding. This course also discusses the Steam power plant in detail as 60% of total energy produced in world are generated by thermal power plants. The syllabus also covers nuclear power plant in detail which is a need of current scenario						various course mance , hydra various erators, system, andling se also of total power							
CO1									1 stean	n cvcle	25	At the end of the course, students will be able to:							
CO1 CO2		Understand basic power generation types and steam cycles. Know about the kind of boilers being used in various industries and their applicability.																	
	Kno	w abo	out the	e kind	of bo	ilers h	eing 1	ised ir				and the	ir appli	cability					
									n vario		ustries	and the	ir appli	icability					
CO3 CO4	Solv Dist	ve pro	blems sh bet	relate	ed to g	gas tur	bines	and R	n vario ankine	us indu e cycle	ustries s.			t meets					
CO3	Solv Dist ecor	ve pro inguis nomic	blems sh bet	veen	ed to g vario	gas tur us pov	bines wer g	and R	n vario ankine ion Me	us indu e cycle odules	ustries s. and cl	100se o	ne that	t meets	desired				
CO3 CO4 Mapping o	Solv Dist ecor	ve provinguis nomic urse (PO	blems sh bet , Outc PO	veen omes	ed to g vario (CO PO	gas tur us por s) to PO	bines wer g Prog	and R enerati ram (PO	ankine ankine ion Me Dutco PO	us indu e cycle odules mes (l	s. and cl POs) &	noose o & Prog PO	ne that gram S	t meets	desired				
CO3 CO4 Mapping o Outcomes	Solv Dist ecor of Cor PO	ve provinguis inguis nomic urse (blems sh bet , Outc	ween	ed to g vario (CO	gas tur us pov s) to	bines wer go Prog	and R enerati	ankine ion Mo Dutco	us indu e cycle odules mes (l	s. and cl	noose o & Prog	ne that	t meets	desired				
CO3 CO4 Mapping o Outcomes COs	Solv Dist ecor of Cor PO 1	ve provi inguis nomic urse PO 2	blems sh bet , Outc PO 3	omes PO 4	ed to g vario (CO PO 5	gas tur us pov s) to PO 6	bines wer g Prog	and R enerati ram (PO 8	ankine ankine ion Me Dutco PO	us indu e cycle odules mes (l	s. and cl POs) &	noose o & Prog PO 12	ne that gram S PS O1	t meets of Specific	desired PSO3				

CO4	3	1	2	2	2	3	3	-	-	-	3	2	-	3	2
Average	3	1.75	2	2.25	1.5	2	2	-	-	-	2	2.25	0.75	3	2.25
Course (Cont	ent:		1		1	I			I	I	I			
L (I	Hours	/Week	;)		T (E	Iours/	Week)	P (Hours/	Week))	Total	Hour/	Week
3					0 0 3										
Unit		(Cont	ent &	c Con	npete	encies	;							
1		Pow	ver P	lants	:										
		Prov	vide	an ov	erviev	w of	powe	r plai	nts as	facilit	ies th	at gen	erate el	ectricit	ty on a
		larg	e sca	le (C1	l).										
					-		-		-			-	energy	dema	nds of
									nmerc			,	4 1		1 4
		-					-	-	er pla			ung s	team, 1	nyaroe	lectric,
				ents a				i pow		ins (C	1).				
			-			•		ts fou	nd in	power	plant	s, such	1 as boi	lers, tu	rbines,
		gene	erato	rs, cor	ndens	ers, p	oumps	s, and	coolir	ng syst	tems (C1).			
					•	and	arrang	gemer	nt of t	hese c	compo	onents	in diffe	erent ty	pes of
		-	-	ants (,										
		-	-		-				•	•				-	water
						-			Plants	-	eratio	on or po	ower pl	ants (C	.1).
			U		-						lants	based	on the I	Rankin	e cycle
		(C1)			2	> r	<u>r</u>		F	r r					
		Disc	cuss	the k	key c	ompo	onents	s and	proc	esses	invol	ved, i	ncludin	g the	boiler,
									ge (C						
		Describe the role of steam in driving the turbine and generating electricity (C1). Hydroelectric Power Plants:									r (C1).				
		-						of h	vdroo	lootrio	nouv	or plan	to whi	oh util	ize the
						• •	-		e elect		-	er pian	its, will		
		-		-			-			•		n, and	turbine	e opera	tion in
				ctric p										1	
		Hig	hligh	t the	advai	ntage	s of l	nydro	electri	c pow	ver pla	ants in	terms	of ren	ewable
							al sus	tainab	oility (C1).					
l				Power			1				1.1.1		4 1 . 4		L
							nuclea	ır pov	ver pla	ints, w	nich g	genera	te elect	ricity t	hrough
				eactio		,	nucl	ear f	ission	and	the ro	ole of	nuclea	r reac	tors in
		-		ig hea	-	-	nuel	vui I	.551011	unu			1140100		, 915 III

	Discuss the sefecty measures and waste menagement associated with pueles
	Discuss the safety measures and waste management associated with nuclear
	power plants (C1).
	Gas Turbine Power Plants:
	Describe the working principle of gas turbine power plants, which utilize the
	combustion of natural gas or liquid fuel to drive the turbine (C1).
	Explain the Brayton cycle and the role of the compressor, combustor, and
	turbine in gas turbine power plants (C1).
	Discuss the advantages of gas turbine power plants, such as high efficiency and
	quick start-up time (C1).
	Diesel Power Plants:
	Explain the working principle of diesel power plants, which use diesel engines
	to generate electricity (C1).
	Discuss the combustion process in diesel engines and the conversion of
	chemical energy into mechanical energy (C1).
	Highlight the applications of diesel power plants, particularly in remote areas
	and as backup power sources (C1).
	Selection of Site:
	Discuss the factors considered in selecting the site for power plants, such as
	proximity to fuel sources, water availability, environmental impact, and
	transmission infrastructure (C2).
	Explain the importance of site evaluation studies, environmental assessments,
	and regulatory compliance in the site selection process (C2).
	Analysis of Steam Cycles:
	Explain the analysis of steam cycles in power plants to assess their efficiency
	and performance (C2).
	Discuss parameters such as pressure, temperature, enthalpy, entropy, and quality
	of steam in the analysis (C2).
	Describe the different variations of the Rankine cycle, including reheating and
	regenerative cycles, and their impact on power plant efficiency (C2).
2	Boiler Classification:
	Provide an overview of boiler classification based on different criteria, such as
	pressure, usage, and fuel type (C1).
	Discuss the main types of boilers, including fire tube and water tube boilers
	(C1).
	Explain the differences between high-pressure boilers and supercritical boilers
	(C1).
	Describe positive circulation boilers, which ensure the continuous flow of water
	and steam (C1).
	Discuss fluidized bed boilers, which use a bed of solid particles to efficiently
	burn fuel (C1).

	Explain waste heat recovery boilers, which utilize the waste heat from other
	processes to generate steam (C1).
	Boiler Components:
	Describe the various components of boilers, including feed water heaters,
	superheaters, reheaters, economizers, condensers, cooling towers, feed water
	treatment systems, and air heaters (C1).
	Explain the purpose and functioning of each component in the boiler system
	(C1).
	Coal Handling and Preparation:
	Discuss the process of coal handling and preparation in power plants (C1).
	Explain the steps involved in storing, crushing, and conveying coal to the boiler
	(C1).
	Combustion Equipment and Firing Methods:
	Describe the combustion equipment used in boilers, such as burners and fuel
	injectors (C1).
	Explain different firing methods, including mechanical stokers, pulverized coal
	firing systems, and cyclone furnaces (C1).
	Ash Handling Systems:
	Discuss the importance of ash handling systems in power plants to handle and
	dispose of the ash generated during combustion (C1).
	Explain different ash handling techniques, such as electrostatic precipitators,
	fabric filters, and bag houses (C1).
	Forced Draft and Induced Draft Fans:
	Explain the role of forced draft fans in supplying air to the combustion process
	(C1).
	Discuss the function of induced draft fans in creating a negative pressure to
	remove flue gases from the boiler (C1).
	Chimney:
	Describe the purpose of a chimney in a power plant, which is to discharge the
	flue gases into the atmosphere (C1).
3	Boiling Water Reactor (BWR):
	Explain the working principle and key features of a boiling water reactor, where
	the reactor coolant also serves as the steam source for the turbine (C1).
	Discuss the main components and systems of a BWR, including the reactor
	core, steam generators, and reactor coolant pumps (C1).
	Pressurized Water Reactor (PWR):
	Describe the operation of a pressurized water reactor, where the reactor coolant
	remains at high pressure to prevent boiling (C1).
	Explain the primary and secondary coolant loops, as well as the steam generator
	and reactor coolant pumps in a PWR (C1).

Pressurized Heavy Water Reactor (PHWR):
Discuss the features and working principle of a pressurized heavy water reactor,
which uses heavy water as both the moderator and coolant (C1).
Explain the role of the fuel channels, calandria, and moderator in a PHWR (C1).
Gas-Cooled Reactor (GCR):
Explain the concept and functioning of a gas-cooled reactor, where a gas such as
helium is used as the coolant (C1).
Discuss the primary and secondary cooling systems, as well as the graphite
moderator used in GCRs (C1).
High-Temperature Gas-Cooled Reactor (HTGR):
Describe the features and operation of a high-temperature gas-cooled reactor,
capable of operating at higher temperatures than conventional reactors (C1).
Explain the use of ceramic-coated fuel particles and helium as the coolant in
HTGRs (C1).
Pebble Bed Reactor (PBR):
Discuss the design and working principle of a pebble bed reactor, which utilizes
small fuel pebbles to achieve high thermal efficiency (C1).
Explain the concept of random packing of pebbles and the use of helium as the
coolant in PBRs (C1).
Fast Breeder Reactor (FBR):
Explain the working principle of a fast breeder reactor, which uses fast neutrons
to sustain a chain reaction and produce more fissile material than it consumes
(C1).
Discuss the use of liquid metal, such as sodium, as the coolant in FBRs (C1).
Liquid Metal Fast Breeder Reactor (LMFBR):
Discuss the features and materials used in liquid metal fast breeder reactors,
which utilize liquid sodium or another liquid metal as the coolant (C1).
Radiation Shielding:
Explain the importance of radiation shielding in nuclear power plants to protect
personnel and the environment from radiation exposure (C1).
Discuss various materials and design considerations for effective radiation
shielding (C1).
Waste Disposal:
Discuss the challenges and methods associated with the disposal of nuclear
waste generated by nuclear power plants (C1).
Explain concepts such as deep geological repositories and long-term storage of
nuclear waste (C1).
Gas Turbine Power Plant:
Explain the basic working principle of a gas turbine power plant, where the
combustion of a fuel drives a gas turbine to generate electricity (C1).
concustion of a fuer arres a gas turbine to generate electricity (C1).

	Discuss the components of a gas turbine power plant, including the compressor,
	combustor, and turbine (C1).
	Open and Closed Cycles:
	Explain the differences between open and closed cycles in gas turbine power
	plants (C1).
	Discuss the advantages and disadvantages of each cycle configuration (C1).
	Intercooling, Reheating, and Regenerating:
	Explain the concepts of intercooling, reheating, and regenerating in gas turbine
	power plants to improve efficiency (C1).
	Discuss how these processes impact the thermodynamic cycle and power output
	(C1).
	Combined Cycle Power Plant:
	Describe the working principle of a combined cycle power plant, which
	combines a gas turbine cycle with a steam turbine cycle for increased efficiency
	(C1).
4	Discuss the configuration and operation of combined cycle power plants (C1).
4	Classification of Hydroelectric Power Plants:
	Discuss the classification of hydroelectric power plants based on various criteria
	such as the head, water flow, and layout (C1).
	Explain the differences between low-head, medium-head, and high-head
	hydroelectric power plants (C1).
	Discuss the applications and advantages of different types of hydroelectric
	power plants (C1). Selection of Prime Movers:
	Explain the factors and considerations involved in selecting prime movers for power plants, including hydroelectric and thermal power plants (C1).
	Discuss the criteria for selecting turbines and generators based on power plant
	requirements (C1).
	Governing of Turbine:
	Explain the concept of turbine governing in hydroelectric power plants and its
	importance in maintaining a constant and stable power output (C1).
	Discuss different governing mechanisms and control systems used in turbines
	(C1).
	Diesel Power Plant:
	Describe the basic components and subsystems of a diesel power plant,
	including the diesel engine, fuel system, cooling system, and electrical system
	(C1).
	Discuss the working principle of a diesel engine and its application in power
	generation (C1).
	Subsystems in Diesel Power Plants:

Explain the subsystems involved in a diesel power plant, such as the lubrication system, starting system, and exhaust system (C1).
Discuss the functions and components of each subsystem (C1).
Starting and Stopping of Diesel Engines:
Explain the procedures and methods for starting and stopping diesel engines in
power plants (C1).
Discuss the importance of proper starting and stopping sequences for engine
efficiency and longevity (C1).
Heat Balance in Diesel Power Plants:
Explain the concept of heat balance in diesel power plants and its significance in
evaluating plant performance and efficiency (C1).
Discuss the calculation and optimization of heat balance components, such as
fuel input, heat output, and losses (C1).
Supercharging of Diesel Engines:
Explain the concept of supercharging in diesel engines and its purpose in
increasing power output and efficiency (C1).
Discuss different methods of supercharging, such as turbocharging and
supercharging using external compressors (C1).

Teaching - Learning Strategies	Contact Hours	
Lecture	25	
Practical		
Seminar/Journal Club	5	
Small Group Discussion (SGD)	5	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision	5	
Others If any:		
Total Number of Contact Hours	45	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment	C01	CO2	CO3	CO4					
Quiz									
VIVA									
Assignment / Presentation	✓	✓	✓	✓					
Unit test									
Practical Log Book/ Record Book									
Mid Semester Examination 1	✓	✓	 ✓ 	 ✓ 					
Mid Semester Examination 2	✓	✓	 ✓ 	✓					
University Examination		✓	✓	✓	•				
Feedback Process	1. Student's Fe	eedback							
	2. Course Exit Survey								
Students Feedback is taken through various steps 1. Regular feedback through Mentor Mentee system. 2. Feedback between the semester through google forms. 3. Course Exit Survey will be taken at the end of semester.									
References: (List of reference books									

i) P. K. Nag, (2014), Power Plant Engineering: Steam and Nuclear, Tata
McGraw-Hill Publishing Company Ltd., 4th EditionISBN13 9789339204044.
ii) M.M. El- Wakil, (2010), Power Plant Technology, Tata McGraw-Hill
Education, 1st Edition, ISBN 13: 9780072871029
iii) P C Sharma (2013), Power Plant Engineering, S.K. Kataria& Sons; 2013
edition, ISBN-13: 978-9350143841
(iii)P.K. Nag, Basic and Applied Thermodynamics, Tata McGraw-Hill
Publishing Company Ltd., ISBN-978-0-070-15131-4
iv)Yunus A. Cengel, Thermodynamics: An Engineering Approach, Tata
McGraw-Hill Publishing Company Ltd., ISBN978-0-073-30537-0vi) C.P. Arora,
Thermodynamics, Tata McGraw Hill Publishing Company Ltd., ISBN-978-0-
074-62014-4

	Faculty of Engineering and Technology														
Name of t	he De	epart	ment			Ν	Iecha	nical	Engin	eering	5				
Name of t	he Pr	ogra	m			В	B. Tech.								
Course Co	ode														
Course Ti	H	lydrog	gen ai	nd Fue	el Cell	S									
Academic	I	Ι													
Semester	V	7													
Number of Credits															
Course Pr	erequ	uisite	:			E	ngine	ering	Ther	nodyr	namics	5			
Course Synopsis							Engineering Thermodynamics To impart knowledge on use of hydrogen for achieving sustainable growth and facilitate analysis of the challenges in transition to hydrogen economy								
Course Outcomes:															
At the end	of the	e cou	rse, st	uden	ts wil	l be a	ble to):							
CO1	Students able to understand and demonstrate the hydrogen production technologies, storage methods and strategies for transition to hydrogen economy												logies,		
CO2													s types	of fuel of	cell
CO3	Stu	dents	able	to co	nsist a	and d	emon	strate	the w	orking	g of fu	el cel	ls		
CO4		dents lysis	able	to kı	now tl	he ap	plicat	tion o	f fuel	cells	with e	econo	mic and	l enviro	nment
Mapping Outcomes		urse	Outc	omes	s (CO	s) to	Prog	ram (Outco	mes (]	POs)&	& Pro	gram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	1	2	3	2	3	3	1	-	-	-	3	3	2	1
CO2	3	2	1	2	2	3	3	2	-	-	-	2	3	1	-
CO3	3	2	3	3	3	2	2	1	-	-	-	2	3	2	1
CO4	3	1	1	1	2	3	3	1	-	-	-	3	3	1	-
Average	3	1	2	3	2	3	3	1	-	-	-	3	3	1.5	0.5
	-														
Course (
L (1	L (Hours/Week) T (Hour					lours/	Week)	Veek) P (Hours/Week) Total Hour/W					Week		

 Discuss the economic factors and considerations involved in transitioning to hydrogen-based energy systems (C1). Explain the cost competitiveness and potential market trends for hydrogen technologies (C1). Fuel Cells: Introduce the concept and working principle of fuel cells as electrochemical devices that convert chemical energy directly into electrical energy (C1). Explain the key components of a fuel cell, including the anode, cathode, electrolyte, and catalyst (C1). Discuss the physical and chemical phenomena that occur within a fuel cell, such as electrochemical reactions and ion transport (C1). Advantages and Disadvantages of Fuel Cells: Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1). Discuss the challenges and disadvantages associated with fuel cells, including
Explain the cost competitiveness and potential market trends for hydrogen technologies (C1). Fuel Cells: Introduce the concept and working principle of fuel cells as electrochemical devices that convert chemical energy directly into electrical energy (C1). Explain the key components of a fuel cell, including the anode, cathode, electrolyte, and catalyst (C1). Discuss the physical and chemical phenomena that occur within a fuel cell, such as electrochemical reactions and ion transport (C1). Advantages and Disadvantages of Fuel Cells: Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1).
(C1).2Fuel Cells: Introduce the concept and working principle of fuel cells as electrochemical devices that convert chemical energy directly into electrical energy (C1). Explain the key components of a fuel cell, including the anode, cathode, electrolyte, and catalyst (C1). Discuss the physical and chemical phenomena that occur within a fuel cell, such as electrochemical reactions and ion transport (C1). Advantages and Disadvantages of Fuel Cells: Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1).
 Fuel Cells: Introduce the concept and working principle of fuel cells as electrochemical devices that convert chemical energy directly into electrical energy (C1). Explain the key components of a fuel cell, including the anode, cathode, electrolyte, and catalyst (C1). Discuss the physical and chemical phenomena that occur within a fuel cell, such as electrochemical reactions and ion transport (C1). Advantages and Disadvantages of Fuel Cells: Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1).
 Introduce the concept and working principle of fuel cells as electrochemical devices that convert chemical energy directly into electrical energy (C1). Explain the key components of a fuel cell, including the anode, cathode, electrolyte, and catalyst (C1). Discuss the physical and chemical phenomena that occur within a fuel cell, such as electrochemical reactions and ion transport (C1). Advantages and Disadvantages of Fuel Cells: Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1).
 devices that convert chemical energy directly into electrical energy (C1). Explain the key components of a fuel cell, including the anode, cathode, electrolyte, and catalyst (C1). Discuss the physical and chemical phenomena that occur within a fuel cell, such as electrochemical reactions and ion transport (C1). Advantages and Disadvantages of Fuel Cells: Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1).
 Explain the key components of a fuel cell, including the anode, cathode, electrolyte, and catalyst (C1). Discuss the physical and chemical phenomena that occur within a fuel cell, such as electrochemical reactions and ion transport (C1). Advantages and Disadvantages of Fuel Cells: Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1).
 electrolyte, and catalyst (C1). Discuss the physical and chemical phenomena that occur within a fuel cell, such as electrochemical reactions and ion transport (C1). Advantages and Disadvantages of Fuel Cells: Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1).
Discuss the physical and chemical phenomena that occur within a fuel cell, such as electrochemical reactions and ion transport (C1). Advantages and Disadvantages of Fuel Cells: Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1).
as electrochemical reactions and ion transport (C1). Advantages and Disadvantages of Fuel Cells: Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1).
Advantages and Disadvantages of Fuel Cells: Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1).
Outline the advantages of fuel cells, such as high energy efficiency, low emissions, and versatility in fuel sources (C1).
emissions, and versatility in fuel sources (C1).
•
cost, durability, and infrastructure requirements (C1).
Types of Fuel Cells and Applications:
Provide an overview of different types of fuel cells, including proton exchange
membrane (PEM) fuel cells, solid oxide fuel cells (SOFCs), and molten
carbonate fuel cells (MCFCs) (C1).
Explain the characteristics and working principles of each type of fuel cell (C1).
Discuss the applications of fuel cells in various sectors, such as transportation,
stationary power generation, and portable electronics (C1).
Nernst Equation:
Explain the Nernst equation and its relevance to fuel cell operation (C1).
Discuss how the Nernst equation relates the fuel consumption to the current
output in a fuel cell (C1).
Relation of Fuel Consumption versus Current Output:
Explain the relationship between fuel consumption and current output in a fuel
cell system (C1).
Discuss factors that influence the fuel consumption rate, such as cell voltage,
cell temperature, and fuel utilization (C1).
3 Fuel Cell Design and Performance:
Explain stoichiometric coefficients and utilization percentages of fuels
(hydrogen, methanol, etc.) and oxygen in fuel cell reactions (C2).
Discuss the calculation of mass flow rates for fuel and oxygen in a single fuel
cell and a fuel cell stack (C2).
Explain how the total voltage and current are determined for fuel cells
connected in parallel and series (C2).
Discuss over-potential and the different types of polarization (activation, ohmic,

	and concentration) that affect fuel cell performance (C2).
	Direct Methanol Fuel Cell (DMFC) Operation:
	Explain the operating scheme of a Direct Methanol Fuel Cell (DMFC), which
	utilizes methanol as the fuel (C2).
	Discuss the advantages and challenges associated with DMFC operation (C2).
	Water Flooding and Water Management:
	Discuss the issue of water flooding in fuel cells and its impact on performance
	(C2).
	Explain strategies for effective water management in fuel cells, such as the use
	of humidification and water removal techniques (C2).
	Polarization in Proton Exchange Membrane Fuel Cells (PEMFC):
	Explain the sources of polarization in PEMFCs, including activation, ohmic,
	and concentration polarizations (C2).
	Discuss techniques to mitigate polarization effects and improve the performance
	of PEMFCs (C2).
4	Fuel Cell Applications:
	Discuss the application of fuel cells in domestic power systems, where they can
	provide reliable and clean electricity for residential use (C2).
	Explain the use of fuel cells for large-scale power generation, where they can be
	integrated into grid systems to provide sustainable electricity (C2).
	Discuss the application of fuel cells in automobiles as a potential alternative to
	internal combustion engines, offering zero-emission transportation (C2).
	Explain the use of fuel cells in space applications, where they provide power for
	satellites and space exploration missions (C2).
	Economic and Environmental Analysis:
	Conduct an economic analysis of fuel cell systems, considering factors such as
	capital costs, operational costs, and the potential for cost reduction through
	technological advancements (C3).
	Conduct an environmental analysis comparing the emissions and environmental
	impact of fuel cells with conventional energy systems (C3).
	Discuss the overall economic and environmental benefits of adopting fuel cell
	technology in various sectors (C2).
	Future Trends:
	Discuss emerging trends in fuel cell technology, such as advancements in
	materials, system efficiency, and durability (C2).
	Explore potential future applications for fuel cells, such as portable devices,
	backup power systems, and integration with renewable energy sources (C2).
	Discuss ongoing research and development efforts aimed at improving the
	performance and reducing the cost of fuel cell systems (C2).

Teaching - Learning Strategies	Contact Hours
Lecture	34
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	2
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	4
Case/Project Based Learning (CBL)	
Revision	3
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Assignments	Mid Semester Examination 2 (Mid Term 3 is optional)
Student Seminar	University End Term Examination
Problem Based Learning (PBL)	Project

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4	
Assignment / Presentation	✓	✓	✓	✓	
Mid Semester Examination 1		✓	✓	~	✓
Mid Semester Examination 2		✓	✓	✓	✓
University Examination	✓	✓	✓	✓	
Feedback Process	1. Student's l	Feedback			
	2. Course Ex	it Survey			

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.

3. Course Exit	t Survey will be taken at the end of semester.
References:	(List of reference books)
	1. Fuel cell Fundamentals, John Wiley and sons, Willey
	2. Fuel cells: Principles and Applications, Viswanathan B and
	AuliceScibioh, University Press
	3. Hydrogen – A fuel for Automatic Engines, Prashukumar G P, ISTE
	4. Fuel Cells: Theory and Applications, Hart A B and Womack G J,
	Chapman and Hall
	5. Tomorrow's Energy – Hydrogen Fuel Cells and the Prospects for
	Cleaner Planet, Peter Hoffman, MIT

Faculty of Engineering and Technology																
Name of th	e De	partn	nent			N	lecha	nical	Engi	neeri	ng					
Name of th	e Pr	ogran	n			В	B. Tech.									
Course Co																
Course Tit		N	Non-Conventional Machining													
Academic Year								III								
Semester																
Number of Credits																
Course Pre	N	lanufa	acturi	ng P	roces	s and T	echno	logy								
Course Sy	m cu pi no m fu	This course is designed to understand advance manufacturing process within the Mechanical Engineering curriculum. Students will explore advance manufacturing process over conventional manufacturing process known as non-conventional manufacturing. The nonconventional manufacturing is designed to prepare interested students for future careers manufacturing industry where non- conventional machines are used.														
Course Ou	tcon	nes:														
At the end of																
CO1		under: ous pi			leed o	f Non	-Trad	lition	al Ma	achini	ing Pro	cesses	and ab	ole to C	lassify	
CO2		1			NC an	d ther	mal e	nergy	y base	ed no	ntraditi	onal n	nachinii	ng proce	esses.	
CO3					vledge ining			ss pa	arame	eters	to calc	ulate	the pe	rformar	nce of	
CO4	То	under	stand	the c	oncep			ning t	he ha	ard m	aterial	using	chemic	al energ	gy and	
Outcomes:	Electrochemical energy. Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes:															
COs	PO 1	РО 2	РО 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO11	РО 12	PSO1	PSO2	PSO3	
CO1	3	2	2	2	2	1	_	-	-	-	-	3	1	-	-	
CO2	3	2	2	2	2	2	-	_	-	-	-	2	2	2	-	
CO3	3	2	3	3	3	1	-	-	-	-	-	3	3	3	-	
CO4	3	3	3	3	2	1	-	-	-	-	-	2	1	-	-	

Average 3	2.25 2.5 2.5	2.25 1.	25	-	-	-	2.5	1.75	1.25	-
Course Cont	ent:	_II	I							<u> </u>
L (Hours/Week)		T (Hours/Week)		P (Hours/Week)			Total Hour/Week			
3		0		0			3			
	-									
1	Content & CompetenciesNon-Conventional Machining Methods:Provide an introduction to non-traditional machining processes, highlighting their significance in modern manufacturing (C1).Compare and contrast non-traditional machining methods with traditional machining processes, emphasizing their unique characteristics and advantages (C2).Discuss the economic considerations of using non-conventional machining methods, including cost-effectiveness and application suitability (C2).Abrasive Jet Machining (AJM):Explain the principle of abrasive jet machining, which involves the use of high- velocity abrasive particles for material removal (C2).Discuss the process parameters involved in AJM, such as abrasive particle size, velocity, and standoff distance (C2).Classify different types of AJM based on variations in the process setup, nozzle design, and abrasive media (C2).Evaluate and determine the material removal rate (MRR) in AJM and discuss its applications and limitations (C3).Water Jet Machining: Explain the principle of water jet machining, which utilizes a high-velocity stream of water for cutting or machining purposes (C2).Discuss the process parameters in water jet machining, including water pressure, nozzle design, and abrasive addition (C2).									
2	Numerical Control (NC) and Thermal-based Processes:									
	Introduce the concept and types of numerical control, highlighting its automated machining (C1).						ng its i	ole in		
	automated ma Discuss the o motion contro Explain the d Numerical Co Ultrasonic Ma	construction l systems ifference l ntrol (DN	onal featur (C2). Detween Co	omputer				-	-	
	Explain the principle of ultrasonic machining, which uses						uses h	ses high-frequency		

	vibrations to remove material (C2).
	Discuss the applications of ultrasonic machining in industries such as aerospace, electronics, and medical (C2).
	Describe the process parameters involved in ultrasonic machining, including
	vibration frequency, amplitude, and tool materials (C2).
	Discuss the purpose of slurry selection in ultrasonic machining and its impact on
	material removal rate and surface finish (C2).
	Plasma Arc Machining:
	Explain the principle of plasma arc machining, which utilizes a high-temperature plasma arc for material removal (C2).
	Discuss the applications of plasma arc machining in cutting, welding, and
	surface modification processes (C2).
	Electron Beam Machining:
	Explain the principle of electron beam machining, which uses a high-velocity
	electron beam for material removal (C2).
	Discuss the advantages of electron beam machining, such as high precision,
	minimal heat-affected zone, and suitability for non-conductive materials (C2).
	Highlight the limitations of electron beam machining, including vacuum
	requirements and limited material thickness (C2).
3	Electric Discharge Machining (EDM):
	Explain the principle of Electric Discharge Machining (EDM), which uses
	electrical sparks to erode and remove material from the workpiece (C2).
	Describe the mechanism of metal removal in EDM, including the formation of
	plasma channel and thermal energy generation (C2).
	Process Parameters and Basic Circuits:
	Discuss the important process parameters in EDM, such as current, voltage, pulse duration, pulse frequency, and electrode material (C2).
	Explain the role of the power supply circuit, including the generator, control unit,
	and servo system, in controlling the EDM process (C2).
	Metal Removal Evaluation and Optimization:
	Describe the methods for evaluating metal removal in EDM, including
	measurement of material removal rate (MRR) and electrode wear (C2).
	Discuss the factors affecting MRR in EDM and the strategies for optimizing it,
	such as adjusting process parameters and tool electrode design (C2).
	Tool Material and Dielectric Selection:
	Explain the considerations in selecting the tool electrode material for EDM, such
	as conductivity, wear resistance, and thermal stability (C2).
	Discuss the role of dielectric fluids in EDM, including their functions in cooling,
	flushing, and preventing electrode wear (C2).

	Highlight the criteria for selecting suitable dielectric fluids, such as dielectric strength, viscosity, and compatibility with the workpiece material (C2). Applications: Discuss the applications of EDM in various industries, such as aerospace, automotive, mold making, and electronics (C2). Explain the advantages of EDM in machining complex shapes, hard materials, and hast consisting materials (C2).
4	and heat-sensitive materials (C2).
4	Electrochemical Machining (ECM): Explain the principle of Electrochemical Machining (ECM), which utilizes the controlled dissolution of the workpiece material through an electrochemical process (C2). Discuss the classification of ECM based on the electrolyte used, such as ECM
	using aqueous electrolytes, salt electrolytes, or organic electrolytes (C2).
	Chemical Machining and Electrochemical Machining:
	Differentiate between Chemical Machining (CM) and Electrochemical
	Machining (ECM), highlighting the role of electrochemical reactions in ECM
	(C2).
	Etchants and Maskants:
	Describe the role of etchants in ECM, which selectively dissolve the workpiece material (C2).
	Discuss the use of maskants in ECM to protect specific areas of the workpiece from the electrochemical dissolution (C2).
	Explain the techniques of applying maskants, such as spraying, brushing, or stenciling (C2).
	Process Parameters, Surface Finish, and MRR:
	Discuss the important process parameters in ECM, including current density, electrolyte flow rate, gap voltage, and electrolyte composition (C2).
	Explain the relationship between process parameters and surface finish in ECM, including the effect of current density on surface roughness (C2).
	Describe the methods for determining and evaluating Material Removal Rate (MRR) in ECM (C2).
	Applications and Principles of ECM Equipment:
	Highlight the applications of ECM in industries such as aerospace, automotive,
	medical, and electronics (C2).
	Explain the principles of ECM equipment, including the power supply, tool electrode, workpiece holder, and electrolyte delivery system (C2).
	Discuss the importance of surface roughness in ECM and the techniques for achieving desired surface finishes (C2).
	Electrochemistry of ECM and Selection of Electrolytes:
	Provide an overview of the electrochemical reactions involved in ECM and the

role of electrolytes in facilitating these reactions (C2).
Discuss the selection criteria for electrolytes in ECM, including conductivity,
compatibility with the workpiece material, and environmental considerations
(C2).
Explain the analysis techniques used to monitor and control the ECM process,
such as pH measurement and analysis of dissolved material (C2).
Electrochemical Grinding:
Briefly introduce Electrochemical Grinding (ECG), which combines ECM with
conventional grinding for enhanced material removal and surface finish (C1).

Teaching - Learning Strategies	Contact Hours	
Lecture	25	
Practical		
Seminar/Journal Club	5	
Small Group Discussion (SGD)	5	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision	5	
Others If any:		
Total Number of Contact Hours	45	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)

1	Journal Club	Long Answer Question (LAQ)

Nature of Assessment		CO1	CO2	CO3	CO4
Quiz					
VIVA					
Assignment / Presentation		✓	✓	✓	✓
Unit test					
Practical Log Book/ Record Book					
Mid Semester Examination 1		✓	✓	✓	✓
Mid Semester Examination 2		✓	✓	 ✓ 	✓
University Examination		✓	✓	 ✓ 	✓
		I			I
Feedback Process	1. Student's Fee	edback			
	2. Course Exit	Survey			
Students Feedback is taken through various	steps				
1. Regular feedback through Mentor Mente	e system.				
2. Feedback between the semester through					
3. Course Exit Survey will be taken at the e	end of semester.				
References: (List of reference books)					
i) Pandey, P.C., Sha	n, H.S. (1980),"	Modern	Machin	ing Pro	ocesses",
India:McGraw-Hill,ISBN:					
ii) Paulo Davim J. (2013), "Non-traditional Machining Processes: Research					
Advances", Netherlands: S	Springer London, IS	BN:9781	4471517	91, 1447	151798

			F	Facul	ty of	f Eng	ginee	ering	and 7	Fechr	nolog	У			
Name of the Department							Iecha	nical	Engin	eering	5				
Name of the Program						В	B. Tech.								
Course Co															
Course Ti	tle					P	Plant layout & Material Handling								
Academic	Year	•				Π	Ι								
Semester						V	7								
Number o	f Cre	dits				3									
Course Pr	erequ	uisite				E	ngine	ering	Works	hop					
Course Synopsis Plant la applicati applicati applicati of imple						tion of tions. tion of ze cos lement	of Ma More f mate t of ma fing th	terial speci rial ha aterial	handli fically andling handlin	ng sy this g meth ng ene	stems f course ods, pat rgy. The	for real is focus hs, meth main pr	world sed on nods to urpose		
Course On At the end CO1	of the	e cou							he Pla	ant La	yout.				
CO2			•					U		g in in	•	es.			
CO3					•					l hand			ient		
CO4			· ·				• •			ivisio					
Mapping Outcomes		urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (]	POs)	& Pro	ogram S	Specific	
COs	PO 1	PO	PO	PO	PO	PO	PO 7	PO	PO	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	1 3	2	3	4 2	5	6	7 1	8	9 2	10 2	11 3	12 3	3	2	1
CO2	3	1	2	3	2	1	1	1	2	1	2	2	3	1	2
CO3	3	2	2	2	2	1	1	1	1	1	2	2	3	2	2
CO4	3	2				2									
			1	1	2		2	2	3	2	3	3	3	2	1
Average	3	1.75	1.5	2	1.75	1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5

L (I	Content: Hours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week			
_ (-	3	0	0	3			
			U	5			
Unit	Conten	t & Competencies					
1	Factors to	Factors to be Considered in Plant Layout and Site Selection: Influence					
		n Plant Layout:					
	•	Analyze the geographical location of the plant, considering factors such as					
		o raw materials, supplie					
		ne availability and cos	st of utilities such as	water, electricity, and			
	-	on infrastructure (C3).					
		nvironmental factors, i	including zoning regul	ations, waste disposal			
	-	al hazards (C3).					
		local labor market and a	availability of skilled w	vorkers (C3).			
		f Plant Site:					
		e suitability of potentia	al sites based on land a	vailability, topography			
		nditions (C3).					
		he legal and regulat	ory requirements for	site acquisition an			
	construction						
		potential for future exp	pansion and the availab	oility of nearby suppor			
	services (C	·					
		ne cost implications, in	icluding land prices, ta	axes, and infrastructur			
	developmen		1.7				
		ons in Facilities Planni	••••	• 4 • - 4 - 4			
		the optimal layout of		-			
		roduction, storage, officient	••				
	-	vorkflow patterns, m	aterial handling requ	irrements, and safet			
	consideratio		in the design of mode	atations and assimus			
	-	ergonomic principles	in the design of work	stations and equipmen			
	placement (modete changes in n	roduction processes			
		ne flexibility to accom nological advancements	• •	roduction processes of			
		Required for Plant Ope					
				wired for the plant			
		e specific equipment processes (C3).		lanca for the plant			
	-		fications, performan	ce capabilities, an			
	2	ty of different equipme	-	ce capaonnies, an			
	-	he availability of spar		requirements and th			
		of equipment suppliers		requirements, and th			
	-	cost-effectiveness and		aant in relation to th			

	desired production capacity (C3).
	Capacity, Serviceability, and Flexibility:
	Determine the desired production capacity based on market demand and
	business projections (C3).
	Consider the serviceability and maintenance requirements of the equipment,
	including accessibility for repairs and preventive maintenance (C3).
	Evaluate the flexibility of the equipment to handle variations in product
	specifications or changes in production volumes (C3).
	Assess the potential for future upgrades or modifications to meet evolving
	business needs (C3).
	Space Requirements and Manpower Requirements:
	Estimate the space requirements for each functional area within the plant,
	considering factors such as equipment layout, storage needs, and circulation paths (C3).
	Determine the optimal allocation of space to ensure efficient workflow and
	minimize material handling distances (C3).
	Analyze the manpower requirements based on production volume, shift
	patterns, and skill levels (C3).
	Consider ergonomic factors and the provision of appropriate facilities for
	employee well-being (C3).
2	
2	Need for Layout
2	Need for Layout Understanding the importance and purpose of layout in manufacturing
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1)
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1)
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as product characteristics, production volume, and required equipment. (C2)
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as product characteristics, production volume, and required equipment. (C2) Factors Influencing Process Layout
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as product characteristics, production volume, and required equipment. (C2) Factors Influencing Process Layout Understanding the factors that influence the design of a process layout, such as
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as product characteristics, production volume, and required equipment. (C2) Factors Influencing Process Layout Understanding the factors that influence the design of a process layout, such as workflow, interdepartmental relationships, and flexibility requirements. (C2)
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as product characteristics, production volume, and required equipment. (C2) Factors Influencing Process Layout Understanding the factors that influence the design of a process layout, such as workflow, interdepartmental relationships, and flexibility requirements. (C2) Fixed and Combination Layout
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as product characteristics, production volume, and required equipment. (C2) Factors Influencing Process Layout Understanding the factors that influence the design of a process layout, such as workflow, interdepartmental relationships, and flexibility requirements. (C2) Fixed and Combination Layout Knowledge of fixed layout where the position of equipment and workstations is
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as product characteristics, production volume, and required equipment. (C2) Factors Influencing Process Layout Understanding the factors that influence the design of a process layout, such as workflow, interdepartmental relationships, and flexibility requirements. (C2) Fixed and Combination Layout Knowledge of fixed layout where the position of equipment and workstations is predetermined.
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as product characteristics, production volume, and required equipment. (C2) Factors Influencing Process Layout Understanding the factors that influence the design of a process layout, such as workflow, interdepartmental relationships, and flexibility requirements. (C2) Fixed and Combination Layout Knowledge of fixed layout where the position of equipment and workstations is predetermined. Knowledge of combination layout where a combination of process and product
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as product characteristics, production volume, and required equipment. (C2) Factors Influencing Process Layout Understanding the factors that influence the design of a process layout, such as workflow, interdepartmental relationships, and flexibility requirements. (C2) Fixed and Combination Layout Knowledge of fixed layout where the position of equipment and workstations is predetermined. Knowledge of combination layout where a combination of process and product layouts is used. (C2)
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as product characteristics, production volume, and required equipment. (C2) Factors Influencing Process Layout Understanding the factors that influence the design of a process layout, such as workflow, interdepartmental relationships, and flexibility requirements. (C2) Fixed and Combination Layout Knowledge of fixed layout where the position of equipment and workstations is predetermined. Knowledge of combination layout where a combination of process and product layouts is used. (C2) Tools and Techniques for Developing Layouts
2	Need for Layout Understanding the importance and purpose of layout in manufacturing operations. (C1) Types of Layouts Familiarity with different types of layouts such as process layout, product layout, cellular layout, and fixed-position layout. (C1) Factors Influencing Product Layout Understanding the factors that influence the design of a product layout, such as product characteristics, production volume, and required equipment. (C2) Factors Influencing Process Layout Understanding the factors that influence the design of a process layout, such as workflow, interdepartmental relationships, and flexibility requirements. (C2) Fixed and Combination Layout Knowledge of fixed layout where the position of equipment and workstations is predetermined. Knowledge of combination layout where a combination of process and product layouts is used. (C2)

	Process chart: Representing the sequence of operations in a graphical format.
	Flow diagram: Illustrating the flow of materials and information in a layout.
	String diagram: Visualizing the movement of materials, workers, or equipment
	within a layout.
	Template and scale models: Creating physical representations of the layout
	design.
	Machine data: Considering equipment specifications and requirements during
	layout design. (C3)
	Layout Planning Procedure
	Understanding the systematic approach to layout planning, including data
	collection, analysis, design, and evaluation. (C3)
	Visualization of Layout
	Ability to create visual representations, such as 2D or 3D drawings or computer-
	aided design (CAD) models, to visualize the layout design. (C4)
	Revision and Improvement of Existing Layout
	Skill to analyze and identify areas for improvement in an existing layout design,
	and propose modifications or enhancements. (C4)
	Balancing of Fabrication and Assembly Lines
	Understanding the concept of balancing production lines to optimize workflow,
	minimize bottlenecks, and improve efficiency. (C5)
3	
3	Importance and Scope of Material Handling:
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1)
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1)
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1):
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling,
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1)
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1) Understanding the importance of proper planning, organization, and
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1) Understanding the importance of proper planning, organization, and coordination in material handling activities. (C1)
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1) Understanding the importance of proper planning, organization, and coordination in material handling activities. (C1) Planning, Operating, and Costing Principles (C2):
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1) Understanding the importance of proper planning, organization, and coordination in material handling activities. (C1) Planning, Operating, and Costing Principles (C2): Understanding the process of planning material handling systems, considering
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1) Understanding the importance of proper planning, organization, and coordination in material handling activities. (C1) Planning, Operating, and Costing Principles (C2): Understanding the process of planning material handling systems, considering factors such as product characteristics, production volume, layout constraints,
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1) Understanding the importance of proper planning, organization, and coordination in material handling activities. (C1) Planning, Operating, and Costing Principles (C2): Understanding the process of planning material handling systems, considering factors such as product characteristics, production volume, layout constraints, and safety requirements. (C2)
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1) Understanding the importance of proper planning, organization, and coordination in material handling activities. (C1) Planning, Operating, and Costing Principles (C2): Understanding the process of planning material handling systems, considering factors such as product characteristics, production volume, layout constraints, and safety requirements. (C2) Knowledge of operating principles, including equipment selection, workflow
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1) Understanding the importance of proper planning, organization, and coordination in material handling activities. (C1) Planning, Operating, and Costing Principles (C2): Understanding the process of planning material handling systems, considering factors such as product characteristics, production volume, layout constraints, and safety requirements. (C2) Knowledge of operating principles, including equipment selection, workflow optimization, and maintenance considerations. (C2)
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1) Understanding the importance of proper planning, organization, and coordination in material handling activities. (C1) Planning, Operating, and Costing Principles (C2): Understanding the process of planning material handling systems, considering factors such as product characteristics, production volume, layout constraints, and safety requirements. (C2) Knowledge of operating principles, including equipment selection, workflow optimization, and maintenance considerations. (C2)
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1) Understanding the importance of proper planning, organization, and coordination in material handling activities. (C1) Planning, Operating, and Costing Principles (C2): Understanding the process of planning material handling systems, considering factors such as product characteristics, production volume, layout constraints, and safety requirements. (C2) Knowledge of operating principles, including equipment selection, workflow optimization, and maintenance considerations. (C2) Understanding cost estimation and cost analysis techniques for material handling operations. (C2)
3	Importance and Scope of Material Handling: Understanding the significance of efficient material handling in manufacturing and logistics operations. (C1) Recognizing the impact of material handling on productivity, cost, and overall operational performance. (C1) Principles of Material Handling (C1): Familiarity with the fundamental principles and concepts of material handling, including safety, efficiency, and ergonomics. (C1) Understanding the importance of proper planning, organization, and coordination in material handling activities. (C1) Planning, Operating, and Costing Principles (C2): Understanding the process of planning material handling systems, considering factors such as product characteristics, production volume, layout constraints, and safety requirements. (C2) Knowledge of operating principles, including equipment selection, workflow optimization, and maintenance considerations. (C2)

	handling, mechanized handling, automated systems, and robotics. (C2)
	Understanding the characteristics, advantages, and limitations of each system
	type. (C2)
	Factors Influencing System Choice (C2):
	Understanding the factors that influence the selection of a material handling
	system, such as product characteristics, volume, weight, fragility, facility layout,
	available space, and budget constraints. (C2)
	Motion Analysis, Flow Analysis, Graphic Analysis, and Safety Analysis (C3):
	Ability to perform motion analysis to optimize movement and minimize
	ergonomic issues in material handling. (C3)
	Conducting flow analysis to evaluate the efficiency of material flow within a
	facility. (C3)
	Utilizing graphic analysis techniques, such as flowcharts and diagrams, to
	visualize material handling processes. (C3)
	Identifying and mitigating safety risks associated with material handling
	operations. (C3)
	Equipment Cost Analysis and Palletization Analysis (C4):
	Ability to analyze the costs associated with material handling equipment,
	including acquisition costs, maintenance costs, and operating costs. (C4)
	Understanding the principles of palletization and its benefits in improving
	efficiency, storage, and transportation. (C4)
	Analysis of Operation and Material Handling Surveys (C5):
	Conducting operational analysis to identify areas of improvement in material
	handling processes and systems. (C5)
	Performing material handling surveys to assess current practices, identify
4	bottlenecks, and propose optimization strategies. (C5)
4	Centralized Electrical, Pneumatic, and Water Line Systems :
	Understanding the concept and benefits of centralized systems for electrical,
	pneumatic, and water supply in buildings and industrial facilities. (C2)
	Knowledge of the design, installation, and maintenance considerations for
	centralized systems. (C2)
	Types of Buildings (C1):
	Familiarity with different types of buildings, such as residential, commercial,
	industrial, and institutional structures. (C1)
	Understanding the specific requirements and considerations for each building
	type. (C1)
	Lighting, Heating, Air Conditioning, and Ventilation Utilities - Planning and
	Maintenance (C2):
	Understanding the principles and practices of lighting design, heating system
	selection, air conditioning, and ventilation planning in buildings. (C2)

Knowledge of energy efficiency considerations and maintenance requirements
for these utilities. (C2)
Waste Handling (C1):
Understanding the importance of proper waste handling and disposal in
maintaining cleanliness, hygiene, and environmental sustainability. (C1)
Knowledge of waste segregation, recycling, and waste management techniques.
(C1)
Statutory Requirements (C2):
Familiarity with the legal and regulatory requirements related to building
utilities, safety standards, waste management, and environmental regulations.
(C2)
Understanding the importance of compliance with statutory requirements for
building operations. (C2)
Importance of Packaging (C1):
Recognizing the significance of packaging in protecting products during
storage, transportation, and distribution. (C1)
Understanding the role of packaging in branding, marketing, and consumer
satisfaction. (C1)
Layout for Packaging (C2):
Ability to plan and design an efficient layout for packaging operations,
considering factors such as workflow, space utilization, and safety. (C2)
Knowledge of best practices in packaging layout design to optimize productivity
and minimize errors. (C2)
Packaging Machinery (C2):
Familiarity with different types of packaging machinery and equipment, such as
fillers, sealers, labelers, and wrappers. (C2)
Understanding the principles of operation, selection criteria, and maintenance
requirements for packaging machinery. (C2)
Wrapping and Packing Materials, Cushion Materials (C2):
Knowledge of various wrapping and packing materials, including boxes,
containers, films, foams, and protective cushioning materials. (C2)
Understanding the characteristics, suitability, and cost-effectiveness of different
packaging materials. (C2)

Teaching - Learning Strategies	Contact Hours
Lecture	30
Practical	

Seminar/Journal Club	5
Small Group Discussion (SGD)	
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz				
VIVA				
Assignment / Presentation	✓	✓	✓	✓
Unit test				
Practical Log Book/ Record Book				

Mid Semester Exam		✓	✓	✓	✓		
Mid Semester Examination 2					✓	✓	✓
University Examin	rsity Examination					✓	
Feedback Process	1.	Student's Fee	dback				
		2.	Course Exit S	urvey			
 Regular feedba Feedback betw 							
References:	(List of reference books)						
	 i) Sharma, S. C. (2001), "Plant Layout and Materials Handling", India: Khanna Publishers, ISBN: 9788174090980, 8174090983. ii) Aggarwal G.K (2007), "Plant Layout & Material Handling", India: Jain Brothers, ISBN: 9788186321782, 8186321780 						

			I	Facul	lty of	f Eng	ginee	ering	and 7	Fechr	nolog	у			
Name of the Department						Ν	Mechanical Engineering								
Name of the Program						В	. Tec	h.							
Course Co	ode														
Course Ti	itle Industrial Safety Engineering														
Academic	Year	•				I	III								
Semester						V	7								
Number o	of Cre	dits				3									
Course Pr	erequ	uisite	:			E	ngine	eering	g Work	shop					
Course Sy	ourse Synopsis This course provides students a brief overview on Ind Safety. This includes understanding the safety precauti various manufacturing processes. Also give overvie safety in finishing and testing.							ions in							
Course O	utcon	nes:				1~									
At the end	of the	e cou	rse st	udent	s will	be al	ble to	:							
CO1	App	oly op	eratio	ns res	earch	techn	iques	in ind	lustrial	Safety	in me	al wo	rking and	d wood	
	wor	king 1	nachi	nes											
CO2	Unc	lerstai	nding	the co	oncept	of Pr	inciple	es of	Machin	e Gua	rding				
CO3	Unc	lerstai	nding	the co	oncept	of Sa	Safety in Welding and Gas Cutting								
CO4	Unc	lerstai	nding	the co	oncept	of Sa	Safety in Finishing, Inspection and Testing								
Mapping Outcomes		urse	Outc	omes	; (CO	s) to	Prog	ram	Outco	mes (POs)	& Pro	ogram S	Specific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	2	2	2	3	3	2	3	2	3	1
CO2	3	-	-	-	-	2	2	3	3	3	2	3	1	3	3
CO3	3	-	-	-	-	2	2	2	2	2	3	2	_	3	3
CO4	3	-	-	-	-	2	2	2	2	2	2	2	-	3	2
Average	3	-	-	-	-	2	2	2.25	2.5	2.5	2.25	2.5	0.75	3	2.25
Course (Cont	ent:	1	1	I	1	1	1		1	1	1	1	1	<u> </u>
L (Hours	/Week	;)		T (H	lours/	Week))	P (Hours/Week)			1	Total Hour/Week		
	3					0				0				3	
												<u> </u>			

Unit	Content & Competencies
1	General Safety Rules :
	Understanding and following general safety rules and regulations in a
	manufacturing or workshop environment. (C1)
	Awareness of personal protective equipment (PPE), safe work practices, and
	emergency procedures. (C1)
	Turning Machines (C2):
	Knowledge of specific safety considerations and precautions when operating
	turning machines. (C2)
	Understanding the safe setup, tooling, and operation of turning machines to
	prevent accidents. (C2)
	Boring Machines (C2):
	Understanding the safety measures and procedures for operating boring machines. (C2)
	Knowledge of proper tooling, workpiece clamping, and machine guarding for safe boring operations. (C2)
	Milling, Planning, and Grinding Machines (C2): Familiarity with the safety guidelines and precautions for milling, planning, and
	grinding machines. (C2)
	Understanding the safe use of cutting tools, workpiece holding methods, and
	machine adjustments. (C2)
	Safety Principles (C1):
	Awareness of general safety principles and their application in machine
	operations. (C1)
	Understanding the importance of risk assessment, hazard identification, and
	implementing safety measures. (C1)
	Safety in the Use of Sawing Machines (C2):
	Knowledge of the safety considerations and precautions when using sawing
	machines. (C2)
	Understanding the safe work procedures, blade selection, and machine guarding
	for sawing operations. (C2)
	Woodworking Equipment (C2):
	Familiarity with the safety guidelines and precautions specific to woodworking
	equipment. (C2)
	Knowledge of safe operation, tool handling, dust control, and machine
	maintenance in woodworking operations. (C2)
	CNC Machines (C2):
	Understanding the safety requirements and precautions for operating CNC
	machines. (C2)
	Knowledge of safe programming, tooling, machine setup, and emergency stop

	procedures for CNC operations. (C2)
	Selection and Care of Cutting Tools (C2):
	Understanding the importance of selecting appropriate cutting tools for specific
	machining operations. (C2)
	Knowledge of tool materials, geometry, tool wear, and proper tool maintenance
	for optimal performance and safety. (C2)
	Preventive Maintenance and Periodical Checks (C2):
	Awareness of the need for regular preventive maintenance and inspection of
	machines and equipment. (C2)
	Understanding the importance of lubrication, calibration, and safety checks to
	ensure safe machine operation. (C2)
	Associated Hazards and Prevention (C2):
	Knowledge of the potential hazards associated with machining operations and
	the necessary preventive measures. (C2)
	Understanding machine guarding, proper handling of hazardous materials, and
	safe work practices to mitigate risks. (C2)
2	Guarding During Maintenance:
	Understanding the importance of guarding during maintenance activities to
	ensure safety. (C2)
	Knowledge of the procedures and practices for implementing effective guarding
	measures during maintenance tasks. (C2)
	Zero Mechanical State (ZMS) (C3):
	Understanding the concept of Zero Mechanical State (ZMS) and its significance
	in ensuring safety during maintenance. (C3)
	Knowledge of the policy and guidelines for achieving and maintaining ZMS
	during maintenance operations. (C3)
	Guarding of Hazards Point of Operation (C2):
	Familiarity with the guarding requirements and techniques for hazards at the
	point of operation. (C2)
	Understanding the importance of machine guarding to prevent accidents and
	injuries at the point of operation. (C2)
	Protective Devices (C2):
	Knowledge of various protective devices used for machine guarding. (C2)
	Understanding the principles and functions of fixed guards, interlock guards,
	automatic guards, trip guards, electron eye, and positional control guards. (C2)
	Fixed Guard Fencing (C2):
	Understanding the concept and purpose of fixed guard fencing for machine
	safety. (C2)
	Knowledge of the selection, installation, and maintenance of fixed guard

	fencing systems. (C2)
	Selection and Suitability (C2):
	Understanding the factors influencing the selection and suitability of machine
	guarding methods. (C2)
	Knowledge of specific guarding requirements and considerations for different
	machines, such as lathes, drills, boring machines, milling machines, grinding
	machines, such as lattes, drins, boring machines, mining machines, grinding machines, shaping machines, sawing machines, shearing machines, presses,
	forge hammers, flywheels, shafts, couplings, gears, sprockets, wheels and chains, multiple and halts $(C2)$
	chains, pulleys and belts. (C2)
	Authorized Entry to Hazardous Installations (C2):
	Understanding the procedures and requirements for authorized entry to
	hazardous installations. (C2)
	Knowledge of the benefits of controlled and authorized access to hazardous
	areas for maintenance and servicing purposes. (C2)
	Benefits of Good Guarding Systems (C2):
	Awareness of the advantages and benefits of implementing effective guarding
	systems. (C2)
	Understanding how proper machine guarding contributes to a safe working
	environment, reduces accidents, and protects personnel and equipment. (C2)
3	Gas Welding and Oxygen Cutting :
	Understanding the principles and techniques of gas welding and oxygen cutting.
	(C3)
	Knowledge of the equipment and materials used in gas welding and oxygen
	cutting processes. (C3)
	Resistance Welding and Arc Welding/Cutting (C3):
	Familiarity with the concepts and methods of resistance welding and arc
	welding/cutting. (C3)
	Understanding the different types of equipment and their applications in
	resistance welding and arc welding/cutting. (C3)
	Common Hazards (C2):
	Knowledge of the common hazards associated with welding and cutting
	processes. (C2)
	Understanding the risks of fire, electrical shock, toxic fumes, and personal
	injuries during welding and cutting operations. (C2)
	Personal Protective Equipment (C2):
	Understanding the importance of personal protective equipment (PPE) in
	welding and cutting operations. (C2)
	Knowledge of the appropriate PPE, such as welding helmets, gloves, protective
	clothing, and respiratory protection. (C2)
	Training and Safety Precautions (C2):
L	

	Familiarity with the importance of training and proper safety precautions in
	welding, brazing, soldering, and metalizing. (C2)
	Understanding the safe handling of equipment, controlling heat, and preventing
	accidents during these processes. (C2)
	Explosive Welding (C3):
	Knowledge of the principles and applications of explosive welding. (C3)
	Understanding the safety considerations and precautions associated with explosive welding. (C3)
	Selection, Care, and Maintenance of Equipment (C2):
	Understanding the criteria for selecting, caring for, and maintaining equipment
	and instruments used in welding and cutting processes. (C2)
	Knowledge of equipment inspection, maintenance procedures, and calibration
	requirements. (C2)
	Safety in Gas Generation, Distribution, and Handling (C2):
	Awareness of safety protocols for the generation, distribution, and handling of industrial gases used in welding and cutting processes. (C2)
	Understanding the color coding systems, flashback arrestors, and leak detection
	methods for ensuring safe gas handling. (C2)
	Pipe Line Safety (C2):
	Familiarity with safety practices related to pipe lines used in gas distribution for
	welding and cutting processes. (C2)
	Knowledge of pipe line inspection, maintenance, and safety measures to prevent
	accidents and leaks. (C2)
	Storage and Handling of Gas Cylinders (C2):
	Understanding the proper storage and handling procedures for gas cylinders used in welding and cutting operations. (C2)
	Knowledge of cylinder storage requirements, handling techniques, and
	precautions for transportation and storage areas. (C2)
4	Safety in Grinding:
	Understanding the safety precautions and guidelines for grinding operations.
	(C2)
	Knowledge of proper use of grinding equipment, personal protective equipment
	(PPE), and safe work practices. (C2)
	Safety in Heat Treatment Operations (C2):
	Familiarity with the safety measures and guidelines for heat treatment
	processes. (C2)
	Understanding the hazards associated with high temperatures, handling of hot
	materials, and proper use of heat treatment equipment. (C2)
	Safety in Electroplating (C2):
	Knowledge of safety procedures and precautions for electroplating processes.

(C2)
Understanding the hazards of chemical exposure, electrical hazards, and proper handling of plating equipment and chemicals. (C2)
Safety in Paint Shops (C2):
Awareness of safety protocols in paint shops, including proper ventilation, use of personal protective equipment, and safe handling of paints and solvents. (C2) Knowledge of fire prevention measures and safe disposal of paint-related waste materials. (C2)
Safety in Sand and Shot Blasting (C2):
Understanding the safety precautions and guidelines for sand and shot blasting
operations. (C2)
Knowledge of proper equipment operation, personal protective equipment, and
safe work practices to prevent injuries and exposure to airborne particles. (C2) Safety in Inspection and Testing (C2):
Familiarity with safety procedures for inspection and testing activities. (C2)
Understanding the importance of following safety guidelines, using appropriate
equipment, and ensuring a safe work environment during inspections and
testing. (C2)
Dynamic Balancing (C3):
Knowledge of the principles and techniques of dynamic balancing. (C3)
Understanding the safety considerations and precautions associated with dynamic balancing processes. (C3)
Safety in Hydro Testing (C2):
Awareness of safety protocols for hydrostatic testing of pressure vessels and pipelines. (C2)
Understanding the hazards associated with high-pressure testing and the importance of following proper procedures and safety precautions. (C2) Safety in Valve, Boiler Drums, and Pressure Vessel Operations (C2):
Knowledge of safety measures and guidelines for working with valves, boiler drums, and pressure vessels. (C2)
Understanding the risks involved, proper handling techniques, and compliance with Indian Boilers Regulation. (C2)
Air Leak Testing and Steam Testing Safety (C2):
Familiarity with safety precautions for air leak testing and steam testing
processes. (C2)
Knowledge of the hazards associated with high-pressure systems, proper
equipment usage, and safety protocols. (C2)
Safety in Radiography (C2):
Understanding the safety procedures and precautions for radiography
operations. (C2)

Vnewledge of rediction beyonds, remained manitoring devices, and the use of
Knowledge of radiation hazards, personal monitoring devices, and the use of
engineering and administrative controls to ensure safety. (C2)
Health and Welfare Measures in the Engineering Industry (C2):
Awareness of health and welfare measures implemented in the engineering
industry to promote employee well-being. (C2)
Understanding the importance of providing a safe and healthy work
environment, including measures such as ergonomic design, medical facilities,
and employee welfare programs. (C2)
Pollution Control in the Engineering Industry (C2):
Familiarity with pollution control measures and regulations in the engineering
industry. (C2)
Knowledge of waste management practices, environmental regulations, and the
importance of minimizing environmental impact in engineering operations. (C2)
Industrial Waste Disposal (C2):
Understanding the proper methods and regulations for the disposal of industrial
waste materials. (C2)
Knowledge of waste segregation, treatment options, and compliance with
applicable environmental guidelines. (C2)

Teaching - Learning Strategies	Contact Hours
Lecture	26
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	2
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term

Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4			
Quiz							
VIVA							
Assignment / Presentation	✓	 ✓ 	 ✓ 	✓			
Unit test							
Practical Log Book/ Record Book							
Mid Semester Examination 1	✓	✓	 ✓ 	✓			
Mid Semester Examination 2	✓	✓	 ✓ 	✓			
University Examination	✓	 ✓ 	 ✓ 	✓			
Feedback Process	1. Student's Feedback						
	2. Co	2. Course Exit Survey					

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

i) Safety Management by John V. Grimaldi and Rollin H. Simonds, All India Travelers Book seller, New Delhi, 5th Edition. ISBN:0939874989

ii) Health and Safety in welding and Allied Processes, welding Institute, UK, High Tech. Publishing Ltd., London, 2002 5th Edition. ISBN: 9781855735385

Faculty of Engineering and Technology															
Name of th	Name of the Department							nical	Engin	eering	5				
Name of the Program							B. Tech.								
Course Co	de														
Course Tit	tle					S	SEC-III (MATLAB)								
Academic	Year	•				II	Ι								
Semester						V	r								
Number of	f Cre	dits				2									
Course Pro	erequ	isite				Р	rogra	mmin	g for i	Proble	m Sol	ving,	Engine	ering M	laths
course by	This course introduces students to MATLAB, a high level programming language and environment wide used in scientific and engineering applications. Studen will learn the fundamentals of MATLAB programmin including data types, control flow, functions, ar numerical computations. The course focuses of problem-solving and algorithm development usin MATLAB.							widely udents iming, , and es on							
	Course Outcomes: At the end of the course, students will be able to:														
CO1	Wri	te M.	ATLA	AB co	de to	solve	e mat	hemat	ical a	nd eng	gineeri	ng pr	oblems.		
CO2	Dev	velop	algor	ithms	and	imple	ement	them	using	g MAT	LAB	progr	amming	g constr	ucts.
CO3		alyze abiliti		isuali	ize da	ta us	ing M	IATL	AB's l	ouilt-ii	n func	tions	and plot	tting	
CO4	1			AB f	or nu	meric	cal co	mputa	tions,	optin	nizatio	on, and	l simula	ations.	
Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:															
COs	PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	1	-	-	-	1	1	1	3	2	1
CO2	3	3	3	2	3	1	-	-	-	1	1	1	3	3	-
CO3	3	3	3	2	3	-	-	-	-	1	2	2	3	3	-
CO4	3	3	3	3	3	-	-	1	-	1	2	2	3	3	-

Average	3	2.75	2.75	2.25	3	0.5	-	0.25	-	1	1.5	1.5	3	2.75	0.25
Course (Cont	ent:													
L (1	Hours	/Week	:)		T (E	lours/	Week)	P (Hours	/Week))	Tota	l Hour/	Week
	0					0				4				4	
Sr. No.		Cor	ntent	& Co	mpe	tenci	es								
1		MA MA	TLA TLA	B env B data	ironn a type	nent a es and	and ba I varia	ables	C2: U	Inders	C1: Re standir 3: Ap	ng)	pering)		
2		Con Con Loo	trol F dition ps an	flow a nal sta d itera	and D ateme ative	ecision ents and struct	on Ma nd log tures	aking gical o (C3: 4	(8 hou operati Applyi	urs) ions ((ing)	C2: Ui		anding)	
3		MA Crea Inpu	Vectorization and array operations (C3: Applying) MATLAB Functions and Scripting (8 hours) Creating and using MATLAB functions (C3: Applying) Input and output parameters (C2: Understanding)												
4		Data Imp Data	Scripting and automation (C3: Applying) Data Manipulation and Analysis (8 hours) Importing and exporting data (C2: Understanding) Data structures: arrays, matrices, and cell arrays (C3: Applying)												
5		Plot 2D Cus	Data indexing and manipulation (C3: Applying) Plotting and Data Visualization (6 hours) 2D and 3D plotting (C3: Applying) Customizing plots and annotations (C4: Analyzing) Creating subplots and multiple plots (C3: Applying)												
6		Creating subplots and multiple plots (C3: Applying) Numerical Computations (8 hours) Numerical methods and algorithms (C4: Analyzing) Solving linear and nonlinear equations (C3: Applying) Numerical integration and differentiation (C3: Applying)													
7		Symbolic Math Toolbox (6 hours) Symbolic variables and expressions (C2: Understanding) Symbolic equations and algebraic manipulations (C3: Applying) Symbolic calculus and differential equations (C4: Analyzing)													
8		Advanced Topics (6 hours) File input/output operations (C3: Applying) Performance optimization techniques (C4: Analyzing)													
9		MA Ima Con	Introduction to MATLAB toolboxes and extensions (C2: Understanding) MATLAB Applications (8 hours) Image and signal processing (C3: Applying) Control systems and simulations (C3: Applying) Optimization and curve fitting (C4: Analyzing)												

10	Project Work (8 hours)
	Application of MATLAB in a project of choice (C5: Creating)
	Problem-solving and algorithm development (C4: Analyzing)
	Documentation and presentation of the project (C3: Applying)

Teaching-Learning Strategies	Contact Hours	
Lecture		
Practical	15	
Seminar/Journal Club		
Small Group Discussion (SGD)	5	
Self-Directed Learning (SDL) / Tutorial	10	
Problem Based Learning (PBL)	15	
Case/Project Based Learning (CBL)	10	
Revision	5	
Others If any:		
Total Number of Contact Hours	60	

Assessment Methods:

Formative	Summative
Viva-voce	Practical Examination & Viva-voce
Problem Based Learning (PBL)	University Examination
Assignment	

Nature of Assessment	CO1	CO2	CO3	CO4
VIVA	~	✓	 ✓ 	✓
Assignment	✓	✓	✓	 ✓
Practical Log Book/ Record Book	•	✓	✓	✓
University Examination	✓	✓	✓	✓
		•	•	•

Feedback Proces	s 1. Student's Feedback					
	2. Course Exit Survey					
Students Feedback	x is taken through various steps					
1. Regular fe	edback through the Mentor Mentee system.					
Feedback I	between the semester through google forms.					
3. Course Ex	it Survey will be taken at the end of the semester.					
References:	ces: (List of reference books)					
	1. "MATLAB: An Introduction with Applications" by Amos Gilat,					
	Wiley, Edition Year: 2012, ISBN: 978-8126537204					
	2. "MATLAB Programming for Engineers" by Stephen J. Chapman,					
	Cengage Learning, Edition Year: 2012, ISBN: 978-8131518656					
	3. "MATLAB for Engineers" by Holly Moore, Pearson, Edition					
	Year: 2017, ISBN: 978-0134589640					
	4. "Essential MATLAB for Engineers and Scientists" by Brian Hahn					
	and Daniel Valentine, Academic Press, Edition Year: 2019, ISBN:					
	978-0081029978					

Faculty of Engineering and Technology					
Name of the DepartmentMechanical Engineering					
Name of the Program	B. Tech.				
Course Title	Kinematics of Machines Lab				
Academic Year	III				
Semester	V				
Number of Credits	1				
Course Prerequisite	NIL				
Course Synopsis	This practical lab work will give students an insight about the basics of applied engineering mechanics.				

Course Outcomes:

At the end of the course students will be able to:

CO1	Demonstrate an understanding of the concepts of various mechanisms and pairs.
CO2	Conduct velocity and acceleration analysis of simple mechanisms.
CO3	Calculate gyroscopic couple find its effect on various vehicles.
CO4	Apply concept of governors for speed control.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes:

COs	PO	РО	РО	РО	РО	PO	PO	РО	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	2	1	-	-	-	1	-	1	3	3	3	1
CO2	3	3	3	3	2	1	-	-	1	1	-	2	3	3	2
CO3	3	2	2	2	3	1	-	-	-	-	1	2	1	3	2
CO4	3	2	2	2	2	-	1	-	-	-	1	2	2	2	1
Average	3	2.4	2.6	2.4	2.2	0.6	0.4	0.2	0.4	0.2	0.6	2.4	2.25	2.75	1.5
Course (Cont	ent:													
L (L (Hours/Week) T (Hours/Week)							P (Hours/Week) Total Hour/Wee						Week	
0					0			2	2				2		

Unit	Content & Competencies						
1	To study various types of Kinematic links, pairs, chains and Mechanisms (C1)						
2	To study inversions of 4 Bar Mechanisms, Single and double slider crank mechanisms (C1)						
3	To plot slider displacement, velocity and acceleration against crank rotation for single slider crank mechanism (C1)						
4	To determine the radius of gyration 'k' of the given compound pendulum (C2)						
5	Comparative study of static and dynamic balancing in rotors (C5)						
6	To study TRI –FILAR / BI-FILAR System (C5)						
7	To determine gyroscopic couple on motorized gyroscope (C4)						
8	To perform experiment on Watt and Porter governors to determine performance characteristic curves, and to find stability & sensitivity (C5)						
9	To perform experiment on Hartnell governor to determine performance characteristic curves, and to find stability & sensitivity (C4)						
10	To perform experiment on Proell governor to determine performance characteristic curves, and to find stability & sensitivity (C4)						
11	Create various types of linkage mechanism in CAD and simulate for motion outputs and study the relevant effects (C1, C2)						

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	15	
Seminar/Journal Club		
Small Group Discussion (SGD)	10	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	30	
Assassment Methods:		

Assessment Methods:

Formative	Summative

Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4			
Quiz	1						
VIVA	✓	✓	✓	✓			
Assignment / Presentation	1						
Unit test	1						
Practical Log Book/ Record Book	 ✓ 	✓	✓	✓			
Mid Semester Examination 1	1						
Mid Semester Examination 2	1						
University Examination	1						
Feedback Process	1. Stu	dent's Fe	edback				
	2. Course Exit Survey						
 Students Feedback is taken through various steps Regular feedback through Mentor Mentee system. Feedback between the semester through google forms. Course Exit Survey will be taken at the end of semester. 							
References:							
 i) A. Ghosh (2009), Theory of Mechanisms and Delhi, ISBN: 978-8-185-93893-6. ii) Thomas Bevan (2009), Theory of Machines, 							

72965-6.

	I	Facul	lty of	f Eng	Engineering and Technology											
Name of t	he De	part	ment			Ν	Mechanical Engineering									
Name of t	m			В	B. Tech.											
Course Co	ode															
Course Ti	tle					F	luid	Mech	anics	Lab						
Academic	Year	•				I	II									
Semester						V	1									
Number o	f Cre	dits				1										
Course Pr	erequ	isite				E	Ingine	ering	Math	s and	Engin	eering	g Mecha	nics		
	Course Synopsis							Fluid mechanics and machinery is a branch of continuum mechanics that deals with the behavior of fluids (gases or liquids) either in motion or at rest and the subsequent effects of fluids upon boundaries, which may be either solid surfaces or interfaces with other fluids. This course deals fluids and their properties, and the kinematics and dynamics of fluid flow. After that students learn the fundamentals of flow through pipes, turbulent flow, dimensional analysis and boundary layers and their applications in engineering.								
Course Ou At the end	of the	e cou														
CO1													id at rest	both.		
CO2			•			•	•				d flow					
CO3	-	lain v otype		meth	ods a	vailab	ilable for boundary layer separation and analyze the model and									
CO4	Und	lerstai	nd the	work	ing pr	incipl	es of t	urbine	es and	pumps	5.					
Mapping Outcomes		urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (J	POs)	& Pro	ogram S	Specific	:	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	3	2	2	2	1	1	1	1	1	1	1	3	2	3	1	
CO2	3	2	2	2	1	1	1	1	1	1	1	2	1	3	3	
CO3	3	2	2	2	1	1	1	1	1	1	1	2	1	3	3	
CO4	3	3	3	3	3	1	1	1	1	1	1	3	1	3		

Average	3	2.25	25 2.25 2.25 1.5 1 1 1 1 1 1 2.5 0.75 3 2									2.25			
Course (Cont	ent:													
L (1	Hours	/Week	:)		T (E	lours/	Week)	P	(Hours/	Week))	Total	Hour	Week
	0					0				2				2	
S. No.			Cont	ent &	c Con	npete	encies						1		
1		Con	ducti	ng ex	perin	nents	to ve	rify B	ernou	lli's th	leoren	n (C1,	C2)		
2		Determination of the Coefficient of discharge and coefficient of velocity for the given Orifice meter (C1, C2)										for the			
3		Determination of the Coefficient of discharge of given Venturi-meter (C1 C2,C3)									er (C1,				
4							Coeffi C2, C		of d	ischar	ge of	give	n of N	otch (V and
5		Con	npara	tive s	tudy	of he	ad los	s in p	ipes c	onnec	ted se	ries ar	nd paral	lel (C1	, C2)
6		Stuc	ly of	fluid	flow	types	using	g Rey	nolds	appara	atus (O	C1, C2	2)		
7		Тос	letern	nine t	he co	effic	ient o	f imp	act for	r vanes	s (C1,	C2,C	3)		
8		Тос	letern	nine t	he m	eta-c	entric	heigh	t of a	floati	ng boo	dy (C1	, C2, C	3)	
9									-				given sl cient of	-	22,C3)
10		 Also, to determine the coefficient of velocity and the coefficient of (C1, C2,C3) To calibrate an orifice meter and study the variation of the co-efficient of discharge with the Reynolds number (C1, C2, C3) 													

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	20
Seminar/Journal Club	4
Small Group Discussion (SGD)	
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	3
Case/Project Based Learning (CBL)	
Revision	3

Others If any:	
Total Number of Contact Hours	30

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment		CO1	CO2	CO3	CO4		
Quiz							
VIVA		✓	 ✓ 	✓	✓		
Assignment / Presentation							
Unit test							
Practical Log Book/ Record Book		✓	✓	 ✓ 	 ✓ 		
Mid Semester Examination 1							
Mid Semester Examination 2							
University Examination	University Examination				✓		
					1		
Feedback Process	1. Studer	nt's Feedback					
	e Exit Survey	it Survey					
Students Feedback is taken through various s 1. Regular feedback through Mentor Mente	-						

2. Feedback betw	2. Feedback between the semester through google forms.						
3. Course Exit Su	3. Course Exit Survey will be taken at the end of semester.						
References: (List of reference books)							
	 i)R. K. Bansal (2010), A Textbook of Fluid Mechanics and Hydraulic Machines, 9th Edition, Laxmi Publication (P) Ltd. New Delhi. ISBN- 978-8-131-80815-3. ii)Yunus A. Çengel (2010), Fluid Mechanics, Tata McGraw Hill, ISBN: 978-0-070-70034-5. iii) Frank M. White (2011), Fluid Mechanics, 7th edition, Tata McGraw-Hill Education, ISBN-978-0-071-33312-2. 						

	Faculty of	engineering and Technology
Name of th	e Department	Mechanical Engineering
Name of th	e Program	B. Tech.
Course Coo	le	
Course Titl	e	Applied Thermodynamics Lab
Academic Y	Year	III
Semester		V
Number of	Credits	1
Course Pre	requisite	Engineering Thermodynamics
Course Syn	opsis	Thermodynamics is a subject of fundamental interest to Mechanical engineers and therefore is always taught in the 2nd or 3rd semester. Present course can be viewed as the next step, where the thermodynamic principles will be employed to discuss about different power producing & absorbing cycles. Properties of pure substance will be discussed, along with the thermodynamic property
Course Out	tcomes:	relations, thereby enabling the participants to estimate all relevant thermodynamic properties at any particular state of point. Subsequently the gas &vapor power cycles will be analyzed, followed by the principles of cogeneration & combined cycles. Then the refrigeration cycles will be introduced, followed by a discussion on the selection of refrigerants. The properties of gas mixtures and gas vapour mixtures will also be discussed, leading to psychrometry&psychrometric processes. The course will be completed with a brief introduction to the chemical equilibrium.
Course Out		relations, thereby enabling the participants to estimate all relevant thermodynamic properties at any particular state of point. Subsequently the gas &vapor power cycles will be analyzed, followed by the principles of cogeneration & combined cycles. Then the refrigeration cycles will be introduced, followed by a discussion on the selection of refrigerants. The properties of gas mixtures and gas vapour mixtures will also be discussed, leading to psychrometry&psychrometric processes. The course will be completed with a brief introduction to the chemical equilibrium.
At the end o	of the course students will b	relations, thereby enabling the participants to estimate all relevant thermodynamic properties at any particular state of point. Subsequently the gas &vapor power cycles will be analyzed, followed by the principles of cogeneration & combined cycles. Then the refrigeration cycles will be introduced, followed by a discussion on the selection of refrigerants. The properties of gas mixtures and gas vapour mixtures will also be discussed, leading to psychrometry&psychrometric processes. The course will be completed with a brief introduction to the chemical equilibrium.
At the end of CO1	of the course students will b To understand the working	relations, thereby enabling the participants to estimate all relevant thermodynamic properties at any particular state of point. Subsequently the gas &vapor power cycles will be analyzed, followed by the principles of cogeneration & combined cycles. Then the refrigeration cycles will be introduced, followed by a discussion on the selection of refrigerants. The properties of gas mixtures and gas vapour mixtures will also be discussed, leading to psychrometry&psychrometric processes. The course will be completed with a brief introduction to the chemical equilibrium.
At the end o	of the course students will b To understand the working To learn the basics of reci	relations, thereby enabling the participants to estimate all relevant thermodynamic properties at any particular state of point. Subsequently the gas &vapor power cycles will be analyzed, followed by the principles of cogeneration & combined cycles. Then the refrigeration cycles will be introduced, followed by a discussion on the selection of refrigerants. The properties of gas mixtures and gas vapour mixtures will also be discussed, leading to psychrometry&psychrometric processes. The course will be completed with a brief introduction to the chemical equilibrium.

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific

Outcomes	:														
COs	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	3	2	1	1	1	0	0	0	0	2	0	3	3
CO2	3	2	3	3	2	2	2	1	0	0	0	3	1	3	2
CO3	3	3	3	2	2	1	2	0	0	1	0	2	1	3	3
CO4	3	2	2	2	2	1	0	0	0	0	1	3	2	3	2
Average	3	2.2 5	2.7 5	2.2 5	1.7 5	1.2 5	1.2 5	0.2 5	0	0.25	0.25	2.5	1	3	2.5
											I		1	1	
Course (Cont	ent:													
L (Hours	/Week	.)		T (Hours/Week)				P (Hours/Week)				Total Hour/Week		
	0				0				2				2		
Sr. No.		(Cont	ent &	: Con	npete	ncies								
1		Mod	lel of :	2 stro	ke and	14 str	oke pe	etrol a	nd dies	sel eng	ine, (C	C1, C2	, C3,C4)	
2		Mod	lel of	Lanca	shire	(C 1, O	C2, C	3,C4)							
3		Mod	lel of	Babco	ock W	ilcox	(C1, 0	C2, C	3,C4)						
4		Mod	lel of	Locor	notive	boile	er (C1	, C2,	C3,C4	l)					
5		Fuel	Supp	ly sys	tem (C1, C	2, C3	,C4)							
6		Model of steam engine with boiler (C1, C2, C3,C4)													
7		Mod	lel of	air ste	am pr	essure	e turbi	ne (C	1, C2,	C3,C	4)				
8		Turt	ojet e	ngine	Mode	el (C1	, C2,	C3,C	4)						
9		Engi	ine ind	licatir	ng sys	tem (C1, C	2, C3	,C4)						
10		Exh	aust g	as cal	orime	ter (C	1, C2	, C3,0	C4)						

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	15
Seminar/Journal Club	

Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	30

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz				
VIVA	✓	1	1	✓
Assignment / Presentation				
Unit test				
Practical Log Book/ Record Book	✓	✓	1	✓
Mid Semester Examination 1				
Mid Semester Examination 2				
University Examination				

Feedback Process	1. Student's Feedback
	2. Course Exit Survey
Students Feedback is taken through various	steps
1. Regular feedback through Mentor Mente	e system.
2. Feedback between the semester through	google forms.
3. Course Exit Survey will be taken at the e	and of semester.
References:	
i) R.K Rajput, Applied Thermodynamics, La	xmi Publications; Second edition (1 January
2016),	-
ISBN-13: 978-8131805831	
ii) Moran, Shapiro, Boettner, Bailey, Fundan	nentals of Engineering Thermodynamics, Wiley
Publication, ISBN 978-1118412930	

	Faculty 01	Engineering and Technology			
Name of	the Department	Mechanical Engineering			
Name of	the Program	B. Tech.			
Course C	Code				
Course T	ïtle	Mechanics of Robot			
Academi	c Year	III			
Semester		V			
Number	of Credits	3			
Course P	rse Prerequisite Robotics Engineering and Applications				
Course Synopsis		The mechanics of a robot refer to the physical aspect and principles that govern its movement, manipulation and overall mechanical functionality. It involve understanding the structural components, joint actuators, and mechanisms that enable the robot perform its intended tasks.			
Course O	Outcomes:				
At the end	d of the course, students will	be able to:			
CO1	Understand the basic compo	nents of robots.			
CO2	Differentiate types of robots	and robot grippers.			
CO3	Model forward and inverse kinematics of robot manipulators.				
CO4	Analyze forces in links and joints of a robot.				
Mapping Outcome		to Program Outcomes (POs)& Program Specific			

COs	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	РО	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	0	1	0	1	1	2	-	-	-	-	2	3	3	1
CO2	3	2	2	0	3	0	0	-	-	-	-	2	3	1	1
CO3	3	2	2	3	2	0	2		-	-	-	2	3	2	1
CO4	3	2	2	2	1	2	2	-	-	-	-	3	3	2	1
Average	3	1.5	1.7 5	1.2 5	1.7 5	0.7 5	1.5	-	-	-	-	2.25	3.0	2.0	1
	<u> </u>		5	5	5	5				<u> </u>					

L (I	Hours/Week)	T (Hours/Week)	P (Hours/Week)	ek) Total Hour/Week							
	3	0	0	3							
Unit	Conter	nt & Competencies									
1	Introductio	n to Spatial Description	ns (C1)								
	Understand	ling positions and orien	tations in 3D space (Cl	l)							
	Overview of	of frames and their impo	ortance in spatial descri	iptions (C1)							
	Spatial Tra	nsformations and Mapp	pings (C2)								
	Exploring	different types of spatia	l transformations (C2)								
		ling mappings and their		iptions between frame							
	(C2)			1							
	· · · ·	for Translations, Rotatio	ons, and Transformation	ns (C2-C3)							
	-	g translations in 3D space		× /							
		bjects around different a									
	-	and combining transform									
		ation Arithmetic (C3-C4									
		Performing arithmetic operations with transformations (C3)									
	-	ling the order of operations									
		oblems involving comp									
		Transform (C4)									
	-	ling the concept of inve	rting a transformation ((C4)							
		nverse transformations									
	(C4)	inverse transformations	to reverse the criect of	u given transformatio							
	· · · ·	Equations (C3-C4)									
		vith transform equations	to represent spatial rel	ationships (C3)							
		uations involving transf		ationships (C3)							
		ransform equations to re		1)							
		-	cal-world scenarios (C-	+)							
	U	Euler Angles (C3) Introduction to Euler angles as a representation of spatial orientations (C3)									
		•									
		Understanding the different rotation sequences and their effects on Euler angles									
		(C3) Final Analys (C2)									
	e e	Fixed Angles (C3)									
		Exploring fixed angles as an alternative method for representing spatial orientations (C3)									
		. ,	advantages of fined -	alog(C2)							
		ling the limitations and maters (C^2)	advantages of fixed an	gies(C3)							
		meters (C3)		amatical management (
		ling Euler parameters ((C^2))	quaternions) as a math	ematical representatio							
	of orientati										
	Applying I	Euler parameters in spat	ial transformations (C3)							

2	Link Description and Reference Frame Connections (C1)						
	Understanding link descriptions and their role in manipulator kinematics (C1)						
	Establishing connections between links and reference frames (C1)						
	Denavit-Hartenberg Approach and D-H Parameters (C2)						
	Introducing the Denavit-Hartenberg approach for link parameterization (C2)						
	Understanding D-H parameters and their use in kinematic analysis (C2)						
	Position Representations (C2-C3)						
	Exploring different position representations in manipulator kinematics (C2)						
	Analyzing the advantages and limitations of each representation (C3)						
	Homogeneous Transformation Matrix (C3)						
	Understanding the concept of homogeneous transformation matrices (C3)						
	Applying homogeneous transformations for position and orientation						
	calculations (C3)						
	Forward Kinematics (C3-C4)						
	Solving forward kinematics problems using the D-H parameters and						
	homogeneous transformations (C3)						
	Calculating end-effector positions and orientations based on joint variables (C4)						
	Inverse Kinematics (C4)						
	Introducing inverse kinematics as the process of determining joint variables						
	from desired end-effector positions (C4)						
	Applying geometric and analytical approaches for solving inverse kinematics						
	problems (C4)						
	Geometric Approach for Inverse Kinematics (C4)						
	Exploring geometric methods, such as the geometric Jacobian and geometric						
	interpretations, for solving inverse kinematics problems (C4)						
	Analytical Approach for Inverse Kinematics (C4)						
	Understanding analytical methods, such as closed-form solutions and numerical						
	methods, for solving inverse kinematics problems (C4)						
3	Cross Product Operator for Kinematics (C2)						
	Introduction to the cross product operator and its role in robot kinematics (C2)						
	Understanding the mathematical properties and applications of the cross product						
	operator (C2)						
	Jacobians and Direct Differentiation (C3)						
	Introduction to Jacobians for robot manipulators (C3)						
	Understanding direct differentiation and its use in calculating Jacobians (C3)						
	Basic Jacobian and Jacobian Jv / Jw (C3)						
	Exploring the basic Jacobian and its components for velocity analysis (C3)						
	Analyzing the Jacobian matrix for linear and angular velocity (C3)						

Jacobian in a Frame and Jacobian in Frame {0} (C3) Understanding the concept of the Jacobian in a specific frame	
Understanding the concept of the Jacobian in a specific frame	
reference frame (C3)	and in the
Applying the Jacobian transformation for different coordinate system	s (C3)
Kinematic Singularity and Kinematic Redundancy (C4)	
Identifying kinematic singularities and their impact on robot motion ((C4)
Exploring the concept of kinematic redundancy and its advar	
challenges (C4)	
Force Balance Equation and Forces (C3)	
Understanding the force balance equation and its role in robot dynam	ics (C3)
Analyzing the forces acting on robot manipulators and their effects (C	23)
Velocity/Force Duality and Virtual Work (C4)	
Exploring the concept of velocity/force duality and its application dynamics (C4)	ns in robot
Understanding virtual work and its relation to robot motion and force	s (C4)
Force Ellipsoid and Jacobian (C4)	
Introduction to the force ellipsoid and its significance in force analysi	is (C4)
Analyzing the relationship between the force ellipsoid and the Jacob	bian matrix
(C4)	
Kinematic Singularity and Kinematic Redundancy (C4)	
Identifying kinematic singularities and their impact on robot motion ((C4)
Exploring the concept of kinematic redundancy and its advant	
challenges (C4)	C
Mechanical Design of Robot Linkages (C4)	
Integrating mechanical design principles with kinematics analysis (C4	4)
Understanding the considerations for designing robot linkages f	
performance (C4)	or optimar
performance (C4)	
4 Introduction to Dynamics (C1)	
Overview of dynamics and its importance in robotics (C1)	
Introduction to key concepts and principles in robot dynamics (C1)	
Velocity Kinematics (C2)	
Understanding velocity kinematics for robotic systems (C2)	
Calculating the linear and angular velocities of rigid bodies (C2)	
Acceleration of Rigid Body and Mass Distribution (C2)	
Analyzing the acceleration of rigid bodies in robotic systems (C2)	
Understanding mass distribution and its impact on dynamics (C2)	
Newton's Equation and Euler's Equation (C3)	
Exploring Newton's equation for motion and forces in robotic system	s (C3)
Understanding Euler's equation and its application to rotating bodies	(C3)

Iterative Newton-Euler's Dynamic Formulation (C4)
Introduction to the iterative Newton-Euler's dynamic formulation (C4)
Applying iterative methods to calculate dynamic quantities (C4)
Closed Dynamic and Lagrangian Formulation of Manipulator Dynamics (C4)
Understanding closed dynamic formulations for robotic manipulators (C4)
Exploring the Lagrangian formulation of manipulator dynamics (C4)
Dynamic Simulation (C4)
Introduction to dynamic simulation techniques for robotic systems (C4)
Implementing numerical methods to simulate robot dynamics (C4)
Computational Considerations (C3)
Analyzing computational aspects in robot dynamics (C3)
Understanding numerical stability and efficiency in dynamic simulations (C3)

Teaching - Learning Strategies	Contact Hours
Lecture	30
Practical	
Seminar/Journal Club	3
Small Group Discussion (SGD)	3
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	4
Others If any:	
Total Number of Contact Hours	45

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)

Seminars	Multiple Choice Questions (MCQ)
Problem-Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment					CO1	CO2	CO3	CO4	
Quiz									
VIVA									
Assignment / Presentation					✓	✓	 ✓ 	 ✓ 	
Unit test									
Practical Log Book/ Record Book									
Mid-Semester Examination 1					✓	 ✓ 	 ✓ 	 ✓ 	
Mid-Semester Exa	mination 2	,			✓	✓	 ✓ 	✓	
University Examin	ation				✓	✓	 ✓ 	✓	
Feedback Process			1. Student's Feedback						
		2. Course Exit Survey							
Students Feedback	is taken th	rough various	step	s					
		ough Mentor M	-						
2. Feedback b	etween the	e semester throu	ugh g	google forms.					
3. Course Exi	t Survey w	ill be taken at t	the e	and of semeste	er.				
References:	(List of r	eference books							
	i)	Industrial Robotics / Groover M P /McGraw Hill. (ISBN- 10: 0071004424, ISBN-13: 978-0071004428)							
	ii)				-	honiogon	A		
	п)	John J. Craig (2008), Introduction to Robotics: Mechanics and Control, 3rd Edition, Pearson Education. ISBN: 978-8-131-718							
	iii)	Theory of Applied Robotics /Jazar/Springer. (ISBN- 978-1-4419-							
		1750-8)			1 0				
	iv)			r, Thomas A. C				•	
				ngineering an I			h, 1 st Edi	tion,	
		Prentice-hall	of In	dia. ISBN: 978	-8-120-30)842-8.			

v)	S. R. Deb and Sankha Deb (2009), Robotics Technology and Flexible Automation, 2nd Edition, Tata McGraw-Hill Edu-cation.
	ISBN: 978-0-070-07791-1.

			ł	Facul	lty of	f Eng	ginee	ering	and [Fechr	nolog	у			
Name of t	Name of the Department						Mechanical Engineering								
Name of t	Name of the Program					В	B. Tec	h.							
Course Co	ode														
Course Ti	tle					N	/lecha	anics	of Ro	bot La	ab				
Academic	Year	•				Π	I								
Semester						V	7								
Number o	f Cre	dits				1									
Course Pr	erequ	uisite	:			R	loboti	cs En	gineer	ring ar	nd Ap	plicati	ons		
Course Sy	nops	is				is ar	s a fac nd res	cility e source	equipp es for	oed wi condu	th spe cting o	cializo experi	y of rob ed tools ments a robots.	, equipr	nent,
Course O	utcon	nes:									•				
At the end	of the	e cou	rse, st	uden	ts wil	l be a	ble to):							
CO1	Gai	n kno	wled	ge of	the d	iffere	ent ma	anufac	cturing	g proc	esses	which	are con	nmonly	
	emj	ploye	d in tl	he inc	lustry	, to f	abrica	ate co	mpone	ents us	sing di	ifferer	nt mater	ials.	
CO2	Fab	oricate	e com	pone	nts w	ith th	eir ov	vn hai	nds.						
CO3	Get	prac	tical l	know]	ledge	of th	e dim	ensio	nal ac	curaci	es and	l dime	ensional	toleran	ces
	pos	sible	with	differ	ent m	anuf	nufacturing processes. Also, able to study and analyse								
	diff	erent	elect	rical	signal	ls.									
CO4	Gai	n Kn	owled	lge of	f the b	pasics	s of el	ectric	al & e	electro	nics c	ircuits	s and ab	le to de	sign
	their own components.														
Mapping		urse	Outc	omes	(CO	s) to	Prog	ram (Outco	mes (]	POs)&	k Pro	gram S	pecific	
Outcomes COs	: PO	РО	РО	PO	PO	РО	РО	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
COS	1	2	3	4	5	6	7	8	9	10	11	12	1501	1502	1505
CO1	3	2	3	1	-	1	3	1	-	-	3	3	3	2	1
CO2	3	2	3	2	1	1	-	-	-	-	2	3	3	2	-
CO3	3	1	2	2	3	2	-	-	-	-	-	2	3	2	_
CO4	3	1	1	1	1	1	2	3	-	-	-	2	3	2	1
Average	3	2	2	2	1	1	1	1	-	-	1	3	3.0	2.0	0.5

Course C										
Course Content: L (Hours/Week)		T (Hours/Week)	P (Hours/Week)	Total Hour/Week						
<u> </u>	0	0	2	1						
Sr. No.	Content & C	Competencies								
1	Investigating position/orie	Robot Arm Kinematics (C2)Investigating the relationship between joint angles and end effectorposition/orientation (C2)Recording changes in the end effector using position sensors (C2)								
2	Workspace A Determining	Analysis (C3) the reachable worksp								
3	Inverse Kine Calculating j (C4) Validating ir	matics (C4) oint angles to achieve overse kinematic equa	e a desired end effector tions by comparing cal	position/orientation						
4	Forward Dyn Studying the (C4)	Analyzing the relationship between applied forces/torques and resulting joint								
5	End Effector Investigating lifting, and p	Manipulation (C3) g the capabilities of th lacing (C3)	e robot's end effector fo							
6	Mobile Robo Analyzing th drive) (C3)	ot Kinematics (C3) he kinematics of mobi	le robots (e.g., different position and orientation	tial drive, holonomic						
7	Path Plannin Developing	g (C3) and testing algorithms	for robot path plannin	g (C3)						
8	Sensor Integ Integrating d	ration (C4) lifferent sensors into t	• •							
9	Investigating Studying saf		ontrol of collaborative a on with human operator							
10	Control Syst	em Evaluation (C4)	t control algorithms for	regulating robot arm						

	position or trajectory (C4)
	Evaluating accuracy, stability, and response time of the control system (C4)
Note:	 At least ten experiments/ jobs are to be performed/ prepared by students in the semester. At least 8 experiments/ jobs should be performed/prepared from the above list, the remaining two may either be performed/prepared from the above list or designed and set as per the scope of the syllabus of the Engineering Workshop.

Teaching -	Learning	Strategies a	and Contact Hours	

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	20
Seminar/Journal Club	
Small Group Discussion (SGD)	05
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	05
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	30

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Nature of Assess	Nature of Assessment					CO3	CO4				
Quiz											
VIVA					✓	 ✓ 	 ✓ 				
Assignment / Presentation											
Unit test											
Practical Log Book/ Record Book					✓	✓	 ✓ 				
Mid-Semester Ex	amination	1									
Mid-Semester Ex	amination	2									
University Exami	nation			✓	✓	✓	✓				
Feedback Proces	SS		1. Student's Feedb	ack							
			2. Course Exit Sur	vey							
2. Feedback	edback th between th	rough th he semes will be t	e Mentor Mentee syst ster through google fo aken at the end of the	orms.							
	i)		trial Robotics / Groover	M P /McG	row Lill	ISPN					
	1))71004424, ISBN-13: 9			(ISDIN-					
	e .					tion to Robotics: Mechanics and Education. ISBN: 978-8-131-71836-0.					
	iii)		y of Applied Robotics /								
	iv) Richard D. Klafter, Thomas A. Chmielewski and Michael Negin, (2010), Robotic Engineering an Integrated Approach, 1 st Edition, Prentice-hall of India. ISBN: 978-8-120-30842-8.										
	v)	S. R. I Auton	Deb and Sankha Deb (2 nation, 2nd Edition, Tat -07791-1.	009), Robo	tics Techr	0,					

			I	Facul	lty of	f Eng	ginee	ering	and [Fechr	olog	у			
Name of t	he De	epart	ment			Ν	Iecha	nical	Engin	eering	5				
Name of t	he Pr	ogra	m			В	B. Tech.								
Course C	ode														
Course Ti	tle					Р	Power Train Design								
Academic	Year	•				Π	Ι								
Semester					V	7									
Number of Credits					3										
Course Prerequisite					E	ngine	eering	Grap	hics a	nd Des	sign,	Strengtl	h of Ma	terials	
Course Synopsis					m ca m th	nodeli apaci notors ne m	ing ar ty, tra s are a nain	nd ana ansmis n inte power	lysis. ssion gral pa r sou	It cov and g art of a rce.	vers a genera any el So r	vehicle Il the as ting so ectric v nodeling ile desig	spect of urce. E ehicle a g the	force lectric nd are motor	
Course O At the end			rse, si	tuden	ts wil	l be a	ble to):							
CO1	1								els of a	n EV	based	on th	e powe	r train	
	top	ology	used	•	-										
CO2										type o					
CO3		ect pi e of v	-		of di	fferer	nt cor	npone	ents of	f an e	lectric	pow	er train	based	on the
CO4	Mo	del ai	nd an	alyze	the p	erfor	manc	e of a	n elect	tric ve	hicle.				
Mapping Outcomes	:			-		,	0	-	-		,		0		
COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	1	2	2	2	-	-	-	-	-	1	2	3	2	-
CO2	3	2	2	2	2	-	-	-	-	-	2	3	3	2	-
CO3	3	1	3	3	3	-	1	-	-	-	-	2	3	2	1
CO4	3	3	3	3	3	-	2	-	-	-	-	2	3	2	-
Average	3	1.75	2.5	2.5	2.5	-	1.5	-	-	-	1.5	2.25	3	2	0.25
	1				I					1			I		<u> </u>

Course C	Hours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week		
2 (1						
	3	0	0	3		
Unit	Conten	t & Competencies				
1	Basic ConeUnderstandUnderstandtransportatiKnowledgeenergy efficiIntroductioFamiliarityparallel, anUnderstand(C2)Power FlowKnowledgetrain systemUnderstandregenerativFuel EfficieAbility tosystems. (CUnderstandefficiency,CalculatingProficiencyequations aUnderstandcharacteristCalculatingAbility to auphill or doUnderstandinclinationCalculatingProficiencyits mass anKnowledge	cept of Electric Tracti ling the principles on systems. (C1) e of the role of electric ciency. (C1) n to Various Electric D with different electric d hybrid systems. (C2) ling the characteristics, w Control in Electric D e of power electronics ns to regulate power flo ling the principles of e braking, and energy s ency Analysis (C3): analyze and evaluate C3) ling the factors influency vehicle weight, aerody g Rolling Resistance (C v in calculating the ro and parameters. (C2) ling the factors aff tics, vehicle weight, and g Grade Resistance (C2 calculate the grade resi pownhill. (C2) ling the relationship of the road. (C2) g Acceleration Force (C v in determining the req d desired acceleration.	and advantages of traction in reducing en prive-Train Topologies (ic drive-train configur , advantages, and limita rive-Train Topologies (and control strategies bw. (C3) power flow control, in storage. (C3) e the fuel efficiency cing fuel efficiency, suc namics, and driving con 2): olling resistance of a fecting rolling resis d road surface condition): stance encountered by between grade, veh (2): puired acceleration force	nissions and improving (C2): ations, such as series tions of each topology C3): used in electric drive- icluding speed control of electric drive-train thas energy conversion ditions. (C3) vehicle using relevant tance, such as tire ns. (C2) a vehicle when driving icle weight, and the e for a vehicle based or		

	Finding the Total Tractive Effort (C2):
	Ability to calculate the total tractive effort required to propel a vehicle,
	considering factors such as rolling resistance, grade resistance, and acceleration
	force. (C2)
	Understanding the relationship between tractive effort, vehicle weight, and
	driving conditions. (C2)
	Torque Required on the Drive Wheel (C2):
	Proficiency in determining the torque required on the drive wheel of a vehicle to
	achieve the desired acceleration and overcome resistance. (C2)
	Knowledge of the relationship between torque, wheel radius, vehicle weight,
	and driving conditions. (C2)
2	Introduction to Electric Components Used in Electric Vehicles (C1):
-	Understanding the basic electric components used in electric vehicles, such as
	batteries, power electronics, electric motors, and control systems. (C1)
	Familiarity with the functions and characteristics of each component in the
	context of electric vehicle propulsion. (C1)
	Configuration and Control of DC Motor Drives (C2):
	Knowledge of the configuration and control strategies employed in DC motor
	drives for electric vehicles. (C2)
	Understanding the principles of speed control, torque control, and regenerative
	braking in DC motor drives. (C2)
	Configuration and Control of Induction Motor Drives (C2):
	Familiarity with the configuration and control techniques used in induction
	motor drives for electric vehicles. (C2)
	Understanding the concepts of vector control, field-oriented control, and direct
	torque control in induction motor drives. (C2)
	Types of Motors (C1):
	Knowledge of different types of electric motors used in electric vehicles, such
	as DC motors, induction motors, and permanent magnet motors. (C1)
	Understanding the characteristics, advantages, and limitations of each motor
	type in the context of electric vehicle applications. (C1)
	RPM and Torque Calculation of Motor (C2):
	Proficiency in calculating the rotational speed (RPM) and torque requirements
	of electric motors based on the vehicle's performance specifications. (C2)
	Understanding the relationship between motor speed, torque, power, and
	mechanical load. (C2)
	Motor Controllers (C2):
	Knowledge of motor controllers used in electric vehicles to regulate motor
	speed, torque, and direction. (C2)
	Understanding the functions and features of motor controllers, such as pulse
	onderstanding the functions and realures of motor controllers, such as pulse

	-
	width modulation (PWM) control, current sensing, and fault protection. (C2)
	Mechanical Connection of Motor (C1):
	Familiarity with the mechanical aspects of connecting electric motors to the
	vehicle's drivetrain, including mounting, coupling, and alignment. (C1)
	Understanding the importance of proper mechanical connections for efficient
	power transmission and vibration reduction. (C1)
	Electrical Connection of Motor (C1):
	Understanding the electrical connections required for integrating electric motors
	into the vehicle's power system, including wiring, connectors, and insulation.
	(C1)
	Knowledge of the safety considerations and industry standards related to
	electrical connections in electric vehicles. (C1)
3	Matching the Electric Machine and the Internal Combustion Engine (ICE) (C3):
	Understanding the criteria and considerations for matching the electric machine
	and the internal combustion engine in hybrid electric vehicles. (C3)
	Knowledge of the powertrain architecture and control strategies for achieving
	optimal power distribution between the electric machine and the ICE. (C3)
	Selection and Sizing of Propulsion Motor (C4):
	Ability to select the appropriate electric propulsion motor based on the vehicle's
	performance requirements, such as power, torque, and speed. (C4)
	Understanding the factors influencing motor selection, including efficiency,
	weight, size, and cost. (C4)
	Component Sizing (C4):
	Proficiency in sizing various components of the electric drivetrain system,
	including the motor, gearbox, and drivetrain components, based on the vehicle's
	specifications and operating conditions. (C4)
	Knowledge of the trade-offs between component size, efficiency, and
	performance. (C4)
	Sizing the Power Electronics (C4):
	Understanding the principles and techniques for sizing the power electronics
	components, such as inverters, converters, and motor controllers, in the electric
	drivetrain system. (C4)
	Ability to determine the power rating, current handling capacity, and thermal
	management requirements of the power electronics components. (C4)
	Selecting the Energy Storage Technology (C5):
	Familiarity with various energy storage technologies used in electric vehicles,
	such as batteries, fuel cells, and ultracapacitors. (C5)
	Understanding the factors influencing the selection of energy storage
	technology, including energy density, power density, cycle life, cost, and
	environmental impact. (C5)
	on monimental impact. (C5)

4	Modeling and Characteristics of EV Powertrain Components (C4):
	Understanding the modeling techniques and principles for various components
	of electric vehicle powertrains, including internal combustion engines (ICE),
	electric motors, batteries, transmissions, and drivetrains. (C4)
	Ability to analyze the performance characteristics of each component and their
	interactions within the powertrain system. (C4)
	ICE Performance Characteristics (C4):
	Knowledge of the performance characteristics of internal combustion engines
	used in hybrid electric vehicles, including power output, torque curve, fuel
	efficiency, and emissions. (C4)
	Understanding the factors influencing ICE performance, such as engine
	displacement, compression ratio, and fuel injection system. (C4)
	Electric Motor Performance Characteristics (C4):
	Understanding the performance characteristics of electric motors, including
	torque-speed characteristics, efficiency, power rating, and thermal limits. (C4)
	Ability to analyze motor performance under various operating conditions and
	control strategies. (C4)
	Battery Performance Characteristics (C4):
	Familiarity with the performance characteristics of batteries used in electric
	vehicles, including energy capacity, power output, charging/discharging rates,
	voltage profiles, and cycle life. (C4)
	Understanding the impact of battery characteristics on vehicle range,
	acceleration, and overall performance. (C4)
	Transmission and Drivetrain Characteristics (C3):
	Knowledge of the transmission and drivetrain systems used in electric vehicles,
	including single-speed, multi-speed, and direct-drive systems. (C3)
	Understanding the role of transmissions in optimizing torque delivery and
	efficiency in electric vehicle powertrains. (C3)
	Regenerative Braking Characteristics (C3):
	Understanding the principles and benefits of regenerative braking in electric
	vehicles, including energy recovery, improved efficiency, and extended range.
	(C3)
	Ability to analyze the regenerative braking system's characteristics, such as
	braking force, energy conversion efficiency, and integration with the overall
	vehicle control system. (C3)
	Driving Cycles Modeling and Analysis (C4):
	Proficiency in modeling and analyzing driving cycles to understand the energy
	consumption, power demand, and performance requirements of electric vehicles under different driving conditions $(C4)$
	under different driving conditions. (C4) Ability to use simulation tools and techniques to evaluate the impact of driving
	Ability to use simulation tools and techniques to evaluate the impact of driving

cycles on vehicle range, energy efficiency, and battery life. (C4)
Vehicle Propulsion Modeling and Analysis (C4):
Ability to model and analyze the propulsion system of electric vehicles,
considering the interactions between the electric motor, transmission, drivetrain,
and energy source (ICE or battery). (C4)
Understanding the factors influencing vehicle propulsion performance, such as
powertrain efficiency, torque distribution, and control strategies. (C4)
Vehicle Braking Modeling and Analysis (C4):
Proficiency in modeling and analyzing the braking system of electric vehicles,
including traditional friction brakes and regenerative braking. (C4)
Ability to evaluate the braking performance, energy recovery, and integration of
braking systems with vehicle dynamics and control. (C4)

Teaching - Learning Strategies	Contact Hours	
Lecture	23	
Practical		
Seminar/Journal Club	4	
Small Group Discussion (SGD)	4	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	10	
Case/Project Based Learning (CBL)		
Revision	4	
Others If any:		
Total Number of Contact Hours	45	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessment					CO1	CO2	CO3	CO4
Assignment / Presentation			✓	✓	✓	✓		
Mid Semester Examination 1			 ✓ 	 ✓ 	 ✓ 	 ✓ 		
Mid Semester Examination 2			✓	✓	✓	✓		
University Examination			~	✓	 ✓ 	✓		
Feedback Process 1. Student's F			Student's Fee	edback	<u> </u>	1	<u> </u>	
2. Course Exi					Survey			
2. Feedback b	etween t Survey (List o 1. 2.	arough Mentor M the semester throw will be taken at the f reference books Iqbal Hussein, " Fundamentals", James Larminie Explained", Wil Mehrdad Ehsani "Modern Electri Fundamentals, T 978-0849331541	ugh the e Elec CR(and ey, 2 , Yi c, H	google forms. end of semeste ctric and Hybr C Press, 2003. John Lowry,' 2003.ISBN: 9' mi Gao, Sebas	er. id Vehio ISBN 9 Electric 78-1-11 stian E. and Fu	97803676 Vehicle 9-94273 Gay and el Cell V	693930. e Techno -3 Ali Ema Vehicles:	adi,

					<i>i y</i> 0		-	Ŭ			nolog	J			
Name of t	ment			Ν	Mechanical Engineering										
Name of the Program								h.							
Course C	ode														
Course T	itle					P	ower	Train	Desig	gn Lał)				
Academic	: Year	•				I	Ι								
Semester						V	7								
Number o	of Cre	dits				1									
Course P	rereq	uisite				E	ngine	eering	Grap	hics a	nd De	sign,	Strengtl	h of Ma	terials
Electric power train in Electric modeling and analysis. It covers capacity, transmission and gener motors are an integral part of any e the main power source. So characteristics is very important w							vers a genera any el So r	ll the as ting so ectric v nodeling	spect of urce. E ehicle a g the	f force lectric ind are motor					
Course O															
At the end	1														
CO1		culate ology	-		r requ	ired a	at the	whee	els of a	ın EV	based	on th	e powe	r train	
CO2	Cal	culate	e the	torque	e dev	elope	d by a	a parti	icular	type c	of mot	or.			
CO3		ect pr			of di	fferer	nt cor	npone	ents of	f an e	lectric	pow	er train	based	on the
CO4					the p	erfor	mance	e of a	n elect	tric ve	hicle.				
Mapping Outcomes	5:								-					-	
COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	-	2	2	2	1	1	-	-	-	2	2	3	2	-
CO2	3	2	2	2	2	1	1	-	-	-	2	3	3	2	-
CO3	3	3	3	3	3	1	2	-	-	-	-	2	3	2	1
	+		3	3	3	1	3	_	_	_	-	2	3	2	_
CO4	3	3	5	5	-									_	

Course Content:									
L (F	Iours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week					
	0	0	2	2					
Unit	Conten	t & Competencies							
1	Power calcu	Power calculation based on power train used. (C1, C2, C3, C4)							
2	Motor torqu	Motor torque calculation. (C1, C2, C3, C4)							
3	Tractive eff	Tractive effort calculation (C1, C2, C3, C4)							
4	Selection of	Selection of Components for EV. (C1, C2, C3, C4, C5)							
5	Selection of	Selection of Energy Storage (C1, C2, C3, C4, C5)							
6	Model the I	Model the Electric Vehicle. (C1, C2, C3, C4, C5)							
7	Model the I	Model the Electric Vehicle Propulsion (C1, C2, C3, C4, C5)							
8	Analyze the	Analyze the EV for different characteristics (C1, C2, C3, C4, C5)							

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	20	
Seminar/Journal Club		
Small Group Discussion (SGD)	2	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	8	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	30	

Formative	Summative					
Viva-voce	Practical Examination & Viva-voce					
	University Examination					

Nature of Assessment	CO1	CO2	CO3	CO4					
VIVA	 ✓ 	✓	 ✓ 	✓					
Practical Log Book/ Record Book	 ✓ 	✓	 ✓ 	✓					
University Examination	 ✓ 	✓	 ✓ 	✓					
Feedback Process	1. Stu	ident's Fe	edback						
	2. Co	urse Exit	Survey						
 Regular feedback through Mentor Men Feedback between the semester through 	 Feedback between the semester through google forms. Course Exit Survey will be taken at the end of semester. 								
 Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003. ISBN 9780367693930. James Larminie and John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003.ISBN: 978-1-119-94273-3. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay and Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004. ISBN 13: 978-0849331541 									

				FA	CUL	ΓY OI	FENG	INEE	RING	AND	TECHN	NOLOC	θY			
Name	of the	e Depa	rtmer	nt		C	Compu	ter Sc	ience I	Engine	ering					
Name	of the	Prog	ram			E	Bachelor of Technology									
Cours	e Cod	e														
Cours	e Title	9				E	Data St	ructur	e and	Algorit	hms					
Acade	emic Y	'ear				Ι	II									
Semes	ter					V	1									
Numb	er of (Credit	ts			3										
Cours	e Prei	equis	ite			P	rograr	nming	g for P	roblem	Solvin	g				
Cours	e Syn	opsis				E	Explori	ng ba	sic dat	a struc	tures su	ich as s	stacks an	d queue	s. Introd	luces a
						v	ariety	of dat	ta struc	ctures s	such as	hash ta	ables, sea	arch tree	es, tries,	heaps
						g	raphs.	Intro	fuces s	sorting	and pa	ttern m	atching a	algorithn	ns	
Cours	e Out	comes	:													
At the	end of	f the c	ourse	studen	ts will	be ab	le to:									
CO1	Abil	ity to s	select	t the data structures that efficiently model the information in a problem												
CO2	Abil	ity to a	assess	efficie	ency tr	cy trade-offs among different data structure implementations or combinations.										
CO3	Impl	ement	and k	now th	ne app	licatio	on of a	lgorith	nms for	r sortin	g and p	attern 1	natching	<u>.</u>		
CO4	Desi	gn pro	ograms	susing	; a vari	ety of	data s	tructu	res, in	cluding	g hash t	ables, t	oinary an	d genera	al tree	
	struc	ctures,	search	n trees,	tries,	heaps	, grapł	ns, and	1 AVL	-trees						
Mapp	ing of	Cour	se Ou	tcome	s (CO	s) to F	Progra	ım Ou	tcome	es (POs	s) & Pr	ogram	Specifi	c Outco	mes:	
Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PS
0.05	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	04
CO1	3	3	1	3	3	-	-	1	3	3	1	1	3	2	1	1
CO2	3	3	1	2	2	-	-	1	2	2	1	1	3	2	1	1
CO3	3	3	1	2	2	-	-	1	2	2	1	1	3	2	1	1
CO4	3	3	1	2	2	-	-	1	2	2	1	1	3	2	1	1
Aver	3	3	1	2.25	2.25	-	-	1	2.25	2.25	1	1	3	2	1	1
age																
Cours		tent:	m /	T	/ XX 7 •	<u> </u>		. /	/==-	.			I			
L (He			Т (I	Hours	/ W eek	K)	P	' (Hou	ırs/We	eek)	(Uar	CL		Total	Hour/W	eek
Wee	ek)										(HOU	rs/Wee	:К)			

3	3 3									
Unit	Content and Competencies									
1	1. Explain Data Structures. (C2: Comprehension)									
	2. Define abstract data types. (C1: Knowledge)									
	3. Describe linked list using singly linked list operation insertion, deletion and searching on linear									
	list. (C2: Comprehension)									
	4. Explain Stacks-Operations. (C2: Comprehension)									
	5. Define array and linked representations of stacks, Queues-operations, array &linked									
	representations, and applications. (C1: Knowledge)									
2	1. Explain Dictionaries by using linear list representation. (C2: Comprehension)									
	2. Define skip list representation operations - insertion, deletion and searching. (C2:									
	Comprehension)									
	3. Describe Hash Table Representation: hash functions, collision resolution-separate chaining, open									
	addressing-linear probing, quadratic probing, double hashing, rehashing, and extendible hashing.									
	(C2: Comprehension)									
3	1. Define and Implementation Search Trees: Binary Search Trees, and Searching Operations like Insertion and Deletion. (C1: Knowledge)									
	 2. Implement AVL Trees, and Height of an AVL Tree with Operations – Insertion, Deletion and Searching. (C6: Evaluation) 3. Explain Red –Black.(C2: Comprehension) 									
4	4. Explain Splay Trees. (C2: Comprehension)1. Explain Graph Traversal Methods and Graph Implementation Methods. (C2: Comprehension)									
	2. Demonstrate Sorting: Heap Sort, External Sorting- Model for external sorting, Merge Sort. (C3:									
	Application)									

Learning Strategies and Contact Hours

Learning Strategies	Contact Hours	
Lecture	30	
Practical		
Seminar/Journal Club	2	
Small Group Discussion (SGD)	2	
Self-Directed Learning (SDL) / Tutorial	1	
Problem Based Learning (PBL)	4	
Case/Project Based Learning (CBL)	2	

Revision	4
Others If any:	-
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2
Objective Structured Clinical Examination (OSCE)	University Examination
Objective Structured Practical Examination (OSPE)	Dissertation
Quiz	Multiple Choice Questions (MCQ)
Seminars	Short Answer Questions (SAQ)
Problem Based Learning (PBL)	Long Answer Question (LAQ)
Journal Club	Practical Examination & Viva-voce
	Objective Structured Clinical Examination (OSCE)
	Objective Structured Practical Examination
	(OSPE)

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz	 ✓ 	✓	 ✓ 	 ✓
VIVA				
Assignment / Presentation	 ✓ 	✓	 ✓ 	✓
Unit test	✓	✓	 ✓ 	 ✓
Clinical assessment				
Clinical/Practical Log Book/ Record Book				
Mid Semester Examination 1	✓	✓	 ✓ 	 ✓
Mid Semester Examination 2	✓	✓	 ✓ 	 ✓

University Exami	nation	✓	 ✓ 	•	✓			
Feedback Proces	38	1. Student's Feedback						
References:	Textbooks: 1. Fundamentals of Data S Susan Anderson Freed, Un 2. Data Structures using C Augenstein, PHI/Pearson 1	niversities Pro	ess.					
	References: 1. Data Structures: A Pseu and B.A. Forouzan, Cenga	••	coach wit	h C, 2nd Ec	dition, R. F. Gilberg			

		ty of	of Engineering and Technology													
Name o	of the	Depart	ment				Computer Science Engineering									
Name o	of the	Progra	m				B. Tech.									
Course	Cod	e														
Course	Course Title						Data	Struct	ture an	d Algo	rithm	s lab				
Acaden	nic Y	ear					III									
Semest	er						V									
Numbe	er of (Credits					1									
Course	Prer	equisite					Prog	rammi	ng for	Proble	em So	lving				
Course	Sync	opsis					It cov	vers va	arious	concep	ots of	C prog	gramm	ing la	nguage	
Course	Outo	comes:				1										
At the e	end of	the cou	rse, st	udents	will t	e abl	e to:									
CO1		Apprec	iate th	e impo	ortance	e of s	tructu	ire and	d Abst	ract da	ta typ	e, and	their b	oasic u	sability	in
		differer	nt appl	ication	ıs.											
CO2		Able to	under	rstand	and ap	oply v	variou	ıs data	struct	ures su	ch as	stacks	s, queu	les, tre	es, grap	hs
		etc. to solve various computing problems.														
CO3		Able to	imple	ement	variou	s kin	ds of	search	ing an	d sorti	ng teo	chniqu	es, and	l decid	le when	to
		choose	which	techn	ique											
CO4		Able to	identi	ify and	l use a	suita	ble data structure and algorithm to solve a real world problem									
Mappin	ng of	Course	Outco	omes (COs)	to Pı	ogra	ու Օս								
COs	PO							in Ou	tcome	s (POs	s) & F	Progra	ım Spo	ecific(Outcom	es:
	10	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10) & F PO 11 	Progra	PSO	PSO 2	Outcom PSO3	es: PSO4
CO1	-	-	-	-	-	-	-	РО	РО	РО	PO	PO	PSO	PSO		
CO1 CO2	1	-	-	-	5	6	-	РО	РО	РО	PO	PO	PSO 1	PSO 2	PSO3	
	1 3	-	-	-	5 3	6	7	PO 8 -	PO 9 -	PO 10	PO 11 -	PO 12 -	PSO 1 3	PSO 2	PSO3	
CO2	1 3 3	-	3 - 2	4 - 1	5 3 -	6 1 1	7	PO 8 - -	PO 9 -	PO 10 -	PO 11 -	PO 12 -	PSO 1 3 3	PSO 2 -	PSO3	
CO2 CO3	1 3 3 3	2	3 - 2 2	4 - 1 1	5 3 -	6 1 1	7 - -	PO 8 - -	PO 9 - -	PO 10 - -	PO 11 - -	PO 12 - -	PSO 1 3 3 3	PSO 2 - 2	PSO3 1	
CO2 CO3 CO4	1 3 3 3 3 3 3 3	2 - - 2 0.25	3 - 2 2 3	4 - 1 1 3	5 3 - 1	6 1 - -	7 - -	PO 8 - -	PO 9 - - -	PO 10 - -	PO 11 - -	PO 12 - -	PSO 1 3 3 3 3	PSO 2 - 2 2 2	PSO3 1 - 1 1 1	
CO2 CO3 CO4 Average Course	1 3 3 3 3 3 3 2 5	2 - - 2 0.25	3 - 2 2 3 1.75	4 - 1 1 3	5 3 - 1 0.25	6 1 - 0.5	7 - -	PO 8 - - -	PO 9 - - -	PO 10 - -	PO 11 - - -	PO 12 - - -	PSO 1 3 3 3 3 3 3	PSO 2 - 2 2 1	PSO3 1 - 1 1 1	PSO4

	Content & Competencies
Sr. No.	Title
1	Write a program that uses functions to perform the following operations on singly linked list.: i) Creation ii) Insertion iii) Deletion iv) Traversal (C1: Knowledge)
2	Write a program that uses functions to perform the following operations on doubly linked list.: i) Creation ii) Insertion iii) Deletion iv) Traversal (C1: Knowledge)
3	Write a program that uses functions to perform the following operations on circular linked list.: i) Creation ii) Insertion iii) Deletion iv) Traversal (C1: Knowledge)
4	Write a program that implement stack (its operations) using i) Arrays ii) Pointers (C1: Knowledge)
5	Write a program that implement Queue (its operations) using i) Arrays ii) Pointers (C1: Knowledge)
6	Write a program that implements the following sorting methods to sort a given list of integers in ascending order i) Bubble sort ii) Selection sort iii) Insertion sort. (C1: Knowledge)
7	Write a program that uses both recursive and non recursive functions to perform the following searching operations for a Key value in a given list of integers: i) Linear search ii) Binary search. (C1: Knowledge)
8	Write a program to implement the tree traversal methods. (C1: Knowledge)
9	Write a program to implement the graph traversal methods. (C1: Knowledge)

Teaching - Learning Strategies Comparison	Contact Hours
---	---------------

Lecture	
Practical	15
Seminar/Journal Club	
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	05
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	30

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Nature of Assessment	CO1	CO2	CO3	CO4
Quiz				
VIVA	✓	✓	✓	✓
Assignment / Presentation				
Unit test				
Practical Log Book/ Record Book	~	~	~	✓
Mid-Semester Examination 1				

Mid-Semester Example	mination 2										
University Examin	ation		√	✓	✓	✓					
					1						
Feedback Process		1. Student's Feedback									
		2. Course Exit Survey									
References:	TEXTBOOKS:	:									
	1. Fundamentals of	ntals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and									
	Susan Anderson F	reed, Universities Press.									
2. Data Structures using C – A. S. Tanenbaum, Y. Langsam, and M. J.											
	Augenstein, PHI/Pearson Education.										
	REFERENCE:										
1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilber and B. A. Forouzan, Cengage Learning											

SEMESTER - VI

Course Code	Course Title
	Dynamics of Machines
	Fluid Machines
	Design of Machine Elements
	Instrumentation and Control Engineering
Program Electi	ves Course - IV
	Fluid Power System
	Design for Manufacturing & Assembly
	Supply Chain and Logistic Management
	Finite Element Methods
	Nano-Technology and Surface Engineering
	SEC-IV (Digital Manufacturing)
	Dynamics of Machines Lab
	Fluid Machines Lab
	Design of Machine Elements Lab
	Instrumentation and Control Engineering Lab
Minor Elective Co	ourse-IV (Robotics)
	Robot Operating and Control Systems
	Robot Operating and Control Systems Lab
Minor Elective Course	e-IV (Electric Vehicles)
	EV Charging Infrastructure Technology
	EV Charging Infrastructure Technology Lab

Minor Elective Course-IV (Computer Science Engineering)					
	Data Visualization				
	Data Visualization Lab				

Name of	the Department	Mechanical Engineering	
Name of	the Program	B. Tech.	
Course C	ode		
Course T	itle	Dynamics of Machines	
Academi	c Year	III	
Semester		VI	
Number of	of Credits	3	
Course P	rerequisite	Kinematics of Machines	
Course Synopsis		Dynamic loads and undesired oscillations increase with higher speed of machines. At the same time, industrial safety standards require better vibration reduction. This course covers parameter identification, balancing of mechanisms, torsional and bending vibrations, vibration isolation, and the dynamic behavior of drives and machine frames as complex systems. Typical dynamic effects, such as the gyroscopic effect, damping and absorption, shocks, nonlinear and self- excited vibrations are covered in dynamics of machinery. Upon completion, students should be able to analyze the effect of dynamic forces on systems and try to minimize the negative impact of such effects.	
Course O At the end	d of the course, students will b	e able to:	
CO1	Demonstrate skills to design to consideration of geometrical	Tywheel for an IC engine and punching press with the and economical constraints.	
CO2		alancing of high-speed rotary and reciprocating machines.	
CO3	Analyze free and forced vibra	tions of machines, engines and structures.	
CO4 Apply the concept of governors for speed control.			

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	3	2	1	-	-	-	1	-	1	3	3	3	1
CO2	3	3	3	3	2	1	-	-	1	1	-	2	3	3	-
CO3	3	2	2	2	3	1	-	-	-	-	1	2	3	2	-
CO4	3	2	2	2	2	-	1	-	-	-	1	2	3	2	-
Average	3	2.25	2.5	2.25	2	0.5	0.25	0	0.5	0.25	0.75	2.25	3	2.5	0.25
Course (Cont	ent:													
L (J	Hours/	/Week	;)		T (H	lours/	Week))	P (Hours	/Week))	Total	Hour/	Week
	3					0				0				3	
Unit		(Cont	ent 8	k Con	npete	ncies								
 Understanding D'Alembert's principle in mechanics, which states tha of the applied forces and inertial forces on a system is equal the equilibrium or constant velocity conditions. (C4) Ability to apply D'Alembert's principle to analyze the dynamic be mechanical systems, including mechanisms and engines. (C4) Equivalent Offset Inertia Force (C4): Understanding the concept of equivalent offset inertia force in rec machinery, which accounts for the dynamic effects of the reciprocatint (C4) Ability to calculate and analyze the equivalent offset inertia mechanisms and reciprocating engines. (C4) Dynamic Analysis of Four-Bar Mechanism (C4): Proficiency in performing dynamic analysis of four-bar me considering the forces, accelerations, and velocities involved. (C4) Ability to determine the dynamic response, including displacements, and accelerations of the mechanism's links. (C4) Dynamic Analysis of Reciprocating Engines (C4): Understanding the dynamic analysis of reciprocating engines, including the forces. (C4) Ability to calculate and analyze the dynamic of engines, including the dynamic analysis of reciprocating engines, including the dynamic forces and moreciprocating engines using methods such as graphical anal mathematical equations. (C4) 								e behav recipro cating m rtia for mecha nts, velo includin cankshaf momen	ior of ecating hasses. rce in nisms, ocities, ng the ft, and nts in						

	Inertia of Connecting Rod (C3):
	Knowledge of the inertia characteristics of the connecting rod in reciprocating
	engines, including its mass, length, and distribution. (C3)
	Understanding the impact of the connecting rod's inertia on the engine's
	dynamic behavior, such as piston acceleration and reciprocating forces. (C3)
	Inertia Force in Reciprocating Engines (Graphical Method) (C4):
	Proficiency in using graphical methods to analyze and determine the inertia
	forces in reciprocating engines, such as the construction and interpretation of
	inertia force diagrams. (C4)
	Ability to evaluate the magnitude, direction, and effects of inertia forces on
	engine components. (C4)
	Turning Moment Diagrams (C4):
	Understanding the concept of turning moment diagrams in reciprocating engines
	and other rotating machinery, which represent the variation of turning moment
	with the crankshaft angle. (C4)
	Ability to construct and interpret turning moment diagrams to analyze the
	torque fluctuations and balance in engines. (C4)
	Single and Multi-Cylinder Engines (C4):
	Knowledge of the characteristics and behavior of single-cylinder and multi-
	cylinder engines, including the effects of firing order, crankshaft arrangement,
	and balancing. (C4)
	Understanding the dynamic differences and considerations between single-
	cylinder and multi-cylinder engines in terms of forces, vibrations, and energy
	fluctuations. (C4)
	Fluctuation of Energy and Flywheels (C4):
	Understanding the concept of energy fluctuation in reciprocating engines and
	the need for flywheels to store and release energy. (C4)
	Ability to analyze the energy fluctuation and the selection, sizing, and
	application of flywheels to dampen speed variations and improve engine
	performance. (C4)
	Applications in Engines and Punching Presses (C3):
	Knowledge of the practical applications and significance of dynamic analysis in
	engine design, optimization, and performance improvement. (C3)
	Understanding the use of dynamic analysis techniques in punching presses to
	ensure smooth operation, minimize vibrations, and enhance productivity. (C3)
2	Static and Dynamic Balancing of Rotating Masses (C4):
	Understanding the concept of static and dynamic balancing in rotating
	machinery to minimize vibrations and improve stability. (C4)
	Ability to calculate and apply the principles of static and dynamic balancing to
	determine the required counterweights or adjustments for balanced rotation.

	(C4)
	Balancing of Reciprocating Masses (C4): Knowledge of the methods and techniques used to balance reciprocating masses
	in engines and machinery. (C4)
	Understanding the effects of unbalanced reciprocating masses on vibrations,
	forces, and engine performance. (C4)
	Balancing of Locomotives (C4):
	Understanding the specific challenges and considerations in balancing
	locomotives, which involve complex systems with reciprocating and rotating masses. (C4)
	Ability to analyze and implement balancing techniques to reduce vibrations,
	improve efficiency, and ensure smooth operation in locomotives. (C4)
	Partial Balancing of Reciprocating Masses (C4):
	Knowledge of partial balancing methods used in reciprocating engines to reduce
	the magnitude of unbalanced forces and vibrations. (C4)
	Understanding the limitations and trade-offs associated with partial balancing
	and the impact on engine performance. (C4)
	Multi-Cylinder Inline and Radial Engines (C4):
	Understanding the principles and challenges of balancing multi-cylinder inline
	and radial engines, including the effects of firing order, crankshaft arrangement,
	and cylinder layout. (C4)
	Ability to analyze and implement balancing techniques specific to multi-
	cylinder engines to minimize vibrations, improve performance, and maintain
	smooth operation. (C4)
3	Introduction to Vibration (C2):
5	Understanding the basic concept of vibration as the oscillation or movement of
	an object or system from its equilibrium position. (C2)
	Familiarity with the importance of studying vibration in various engineering
	applications and its impact on system performance. (C2)
	Terminology of Vibration (C2):
	Knowledge of the fundamental terminology used in the field of vibration,
	including terms such as displacement, velocity, acceleration, frequency,
	amplitude, and resonance. (C2)
	Ability to use and interpret these terms in the analysis and characterization of
	vibrating systems. (C2)
	Classification of Vibrations (C2):
	Understanding the different types and classifications of vibrations based on
	various criteria such as source, nature, and excitation. (C2)
	Knowledge of classifications such as free vibration, forced vibration,
	_
	deterministic vibration, random vibration, and self-excited vibration. (C2)

Understanding the concept of isochronism, which relates to the ability of a
governor to maintain a constant speed under varying load conditions. (C4)
Effect of Friction (C3):
Understanding the influence of friction in governor systems and its impact on
system performance. (C3)
Knowledge of the different types of friction present in governors, such as
Coulomb friction and viscous friction. (C3)
Ability to analyze and calculate the effect of friction on the equilibrium speeds
and ranges of speed in governors. (C3)
Calculation of Equilibrium Speeds and Ranges of Speed of Governors (C4):
Ability to perform calculations to determine the equilibrium speeds and ranges
of speed in governors based on the governor characteristics and system
parameters. (C4)
Understanding the mathematical equations and methods used to calculate these
values, such as the governor equation and the use of control curves. (C4)

Teaching - Learning Strategies	Contact Hours	Contact Hours			
Lecture	26				
Practical					
Seminar/Journal Club	4				
Small Group Discussion (SGD)	4				
Self-Directed Learning (SDL) / Tutorial					
Problem Based Learning (PBL)	7				
Case/Project Based Learning (CBL)					
Revision	4				
Others If any:					
Total Number of Contact Hours	45				

Formative	Summative		
Multiple Choice Questions (MCQ)	Mid Semester Examination 1		
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is		
	optional)		

Assignments	University End Term Examination		
Student Seminar	Project		
Problem Based Learning (PBL)			

Nature of Assessment		CO1	CO2	CO3	CO4		
Assignment / Presentation		✓	✓	✓	✓		
Mid Semester Examination 1		✓	✓	✓	✓		
Mid Semester Examination 2		✓	✓	✓	✓		
University Examination		~	✓	✓	~		
Feedback Process 1. Student's F 2. Course Exit							
 Regular fee Feedback b 	3. Thomas Bevan (2	lentee system. ugh google forms. the end of semester)), "Theory of Mach 0-070-14477-4. Theory of Mechanis Pvt. Ltd., New Delh 009), Theory of Ma	ines", 3rd sms and 1 i, ISBN: achines, 3	Machines 978-8-18	s, 3rd Edit. 5-93893-	ion, ·6.	
	 Education, ISBN: 978-8-131-72965-6. 4. Kenneth J Waldron and Gary L. Kinzel (2007), Kinematics, Dynamic and Design of Machinery, 2nd Edition, John-Wiley and Sons Inc., New York, ISBN: 978-8-126-51255-3. 						

			I	Facul	lty o	f Eng	ginee	ering	and 7	Fechr	nolog	у					
Name of t	he De	epart	ment			Ν	/lecha	nical	Engin	eering	5						
Name of t	he Pr	ogra	m			В	B. Tech.										
Course Co	ode																
Course Ti	tle					F	Fluid Machines										
Academic	Year	•				Π	III										
Semester						V	/I										
Number o	f Cre	dits				3											
Course Pr	erequ	uisite	:			F	'luid N	Iechai	nics								
Course Sy	nops	is				je R	ets, H loto-d	Iydra	ulic 7 ic pu	Furbin	es, R	lotary	motio	e of Imp n of li ent pur	iquids,		
Course Ou	ıtcon	nes:					<u> </u>										
At the end	of the	e cou	rse, si	tuden	ts wil	l be a	able to):									
CO1	Dis	cuss t	the ch	aract	eristi	cs of	centri	fugal	pump	and r	ecipro	cating	g pumps	8			
CO2	Cal	culate	e forc	es an	d woi	k doi	ne by	a jet o	on fixe	ed or r	novin	g plate	e and cu	urved pl	ates		
CO3	Kno	ow th	e woi	king	of tui	bines	s and	select	the ty	pe of	turbin	e for a	an appli	cation.			
CO4		the an	-	is of a	air co	mpre	ssors	and so	elect t	he suit	table (one fo	r a spec	ific			
Mapping o Outcomes	:													- 			
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	3	2	2	2	2	1	-	-	1	1	-	1	3	3	-		
CO2	3	2	3	2	2	1	-	-	1	-	-	1	3	3	-		
CO3	3	3	3	2	1	1	-	-	-	-	-	1	3	2	-		
CO4	3	3	2	3	2	_	1	_	_	_	_	1	3	3	-		
Average	3	2.5	2.5	2.25	1.75	0.75	0.25	0	0.5	0.25	0	1	3	2.75	0		
	1	1	1	I	l	1					I	I	1		<u> </u>		

Course C	ontent:									
L (H	lours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week						
	3 0 0									
Unit	Content			Competency						
1	on a fixed an vanes - work Hydraulic T Degree of features - V ratio, jet rat design of H reaction tun features - V Axial flow Velocity tr Characteristi surge tanks - - Specific sp curves, scale power.	 Impact of jets: Introduction to hydrodynamic thrust of jet on a fixed and moving surface (flat and curve),- Series of vanes - work done and efficiency. Hydraulic Turbines : Impulse and Reaction Turbines - Degree of reaction - Pelton Wheel - Constructional features - Velocity triangles - Euler's equation - Speed ratio, jet ratio and work done , losses and efficiencies, design of Pelton wheel - Inward and outward flow reaction turbines- Francis Turbine - Constructional features - Velocity triangles, work done and efficiencies. Axial flow turbine (Kaplan) Constructional features - Velocity triangles- work done and efficiencies - Surge tanks - Cavitation in turbines Governing of turbines - Specific speed of turbine , Type Number- Characteristic curves, scale Laws - Unit speed - Unit discharge and unit 								
2 3	Single actin	C1, C2, C3								
4	acceleration indicator dia their purpos cylinder pur pumping dev Accumulator pump and lo	head - effect of acce agram – speed calcul es, saving in work do mps. Multistage pum vices-hydraulic ram, r, Intensifier, Jet pur be pump.	- indicator diagram- leration and friction on lation- Air vessels and one to air vessels multi ps-selection of pumps- nps, gear pumps, vane							

compressor-single stage compressor, equation for work	
with and without clearance volume, efficiencies,	
multistage compressor, intercooler, free air delivered	
(FAD)	
Centrifugal compressor-working, velocity diagram, work	
done, power required, width of blades of impeller and	
diffuser, isentropic efficiency, slip factor and pressure	
coefficient, surging and chocking. Axial flow	
compressors:- working, velocity diagram, degree of	
reaction, performance. Roots blower, vane compressor,	
screw compressor.	

Teaching - Learning Strategies	Contact Hours	
Lecture	28	
Practical		
Seminar/Journal Club	2	
Small Group Discussion (SGD)	2	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	9	
Case/Project Based Learning (CBL)		
Revision	4	
Others If any:		
Total Number of Contact Hours	45	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessm	nent		CO1	CO2	CO3	CO4			
Assignment / Prese	entation		✓	 ✓ 	✓	✓			
Mid Semester Exa	mination 1		✓	 ✓ 	 ✓ 	 ✓ 			
Mid Semester Exa	mination 2		✓	 ✓ 	 ✓ 	 ✓ 			
University Examin	University Examination								
Feedback Process	5	1. Student's Fee	edback						
		2. Course Exit S	Survey						
	 between the semester throut Survey will be taken at a semester throut (List of reference books) 1. S K Som, Introducti, McGraw Hill Educated 2. Bansal R. K., A Tex Machines, Laxmi Pu 3. Cengel Y. A. and J. Hill, 2013 4. Yahya S. M, Fans, H 2005. 5. Rajput R. K, Fluid M Co.,2006. 	the end of semester on to Fluid Mecha ation India 2011 atbook of Fluid Me ublications, 2005. M. Cimbala, Fluic Blower and Compr	er. anics an echanics d Mecha ressor, J	s and Hy nnics, Ta Fata McC	draulic ta McGı Graw Hil	aw l,			

	Faculty of I	Engineering and Technology				
Name of th	e Department	Mechanical Engineering				
Name of th	e Program	B. Tech.				
Course Co	de					
Course Tit	le	Design of Machine Elements				
Academic	Year	II				
Semester		IV				
Number of	Credits	3				
Course Prerequisite Strength of Materials						
Course Synopsis Mechanical mechanical introduction provides the and the abil understand failure crite springs, beil design of function pro		Mechanical Machine Design is an essential course for mechanical engineering students. This course is an introduction to the basic principles of modern engineering. It provides the students with fundamental skills of engineering and the ability to apply the theories of science to practice and understand the factors; such as stresses, deformations, and failure criteria, influencing the machine elements like shafts, springs, belts, bearings, gears etc. The main objective of design of machine elements is that the machine should function properly to satisfy the needs of the customer and it should be safe against the predicted modes of failure.				
Course Ou						
At the end	At the end of the course, students will be able to:					
CO1	Explain the influence of steady and variable stresses in machine component design.					
CO2	Apply the concepts of design to temporary and permanent joints.					

CO3	Apply the concepts of design to shafts, keys and couplings.

CO4 Apply the concepts of design to Springs and Bearings.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	- 3	4	5	6	7	8	9	10	11	12			
CO1	3	2	2	2	1	1	1	1	1	1	1	3	2	3	1
CO2	3	2	2	2	1	1	1	1	1	1	1	2	1	3	2
CO3	3	2	2	2	1	1	1	1	1	1	1	2	1	3	3

CO4	3	3	3	3	3	1	1	1	1	1	1	3	1	3	3
Average	3	2.25	25 2.25 2.25 1.5 1 1 1 1 1 1 2.5 0.75 3										2.25		
Course (Course Content:														
L (1	Hours	/Week	x)		T (Hours/Week) P (Hours/Week) Total Hour/Week									Week	
	3					0				0				3	
Unit		(Cont	ent &	c Con	npete	encies	;					1		
1		Eng Und deve Farr cond Pha Kno ider eval Und Des Und proc marr Kno envi Star Farr guid Und Star Farr guid Und star farr kno envi Star farr kno envi Star farr kno envi Star farr kno envi Star farr kno envi Star farr kno envi Star farr kno envi Star farr star farr kno envi Star farr star farr kno envi Star farr star farr star farr farr farr farr farr farr farr f	ineer ilersta elopm niliari ceptu ses of owled ntifica luatio lersta tinuor ign C lersta cess, nufact owled ironm ndards niliari leline lersta relial ection lersta gn, si rating owled n as n	ing D nding nent o ty wi al des f Desi ge of ttion, n. (Can ourabil ge of nental s and ty w s and nding ble ma of M nding uch as ge of nding ge of nding ge of nding ge of nding ge of nding ble ma of M nding ble ma of M nding ble ma of M nding ble ma	esign the f mac th the ign, c gn (C the con 3) the inema eratio the in impa Code the in impa Code the in speci the i achin achin atteria the i speci the i achin fateria	(C3) conc chine e des letail (C3): diffe itera ent ar on (C vario) as and co mpor as (C2 releva ificat mpor s (C2 releva ificat mpor e ope als (C facto chani s, (C2 rent mpor	ept of s. (C3 ign p ed de rent p aliza tive f aliza tive f aliza func ost. (C tance ost. (C tance ost. (C tance ost. (C tance cost. (C tance	3) rocess sign, s sign, s phases tion, nature prove ctors t tional C3) of co intens of ac n. (C2 fluence of m comp	s and and fin and fin anal s of th anal e of t ment. hat ne rec nsider ance in ering chine lhering) ing th ies, av	the di naliza he de ysis, he de (C3) eed to quiren ing fa n the c stand desig g to st ne sel railabi ls cor . (C3)	afferen tion. (sign p syntl esign be co nents, ctors s design dards n. (C2 candard ection lity, c	t phas C3) process nesis, process nsider per such a of ma and)) ds and)) ds and	ts impo ses invo s, inclu- optim ss and red duri rforman s safety achines. codes l codes l codes haterials ad comp d in ma	lved, s ding prization the ne ng the ce c , ergon (C3) that p to ensu for m patibilit	uch as roblem , and ed for design riteria, omics, orovide re safe achine ty with

Understanding the principles of designing machines to withstand static dynamic loads, considering factors such as strength, stiffness, and fat resistance. (C3) Knowledge of the methods used to analyze and predict the effects of static dynamic loads on machine components. (C3) Modes of Failure, Factor of Safety (C3):	igue
dynamic loads on machine components. (C3)	and
Modes of Failure. Factor of Safety (C3)	
includes of i undered, i weller of Survey (Co).	
Understanding the different modes of failure in machine components, suc fracture, fatigue, and excessive deformation. (C3)	n as
Knowledge of the concept of factor of safety and its importance in ensuring	the
reliability and durability of machine designs. (C3)	the
Principal Stresses, Theories of Failure (C3):	
Understanding the concept of principal stresses and their role in determining	the
state of stress in machine components. (C3)	uie
Familiarity with theories of failure, such as the maximum shear stress the	orv
maximum distortion energy theory (Von Mises criterion), and maxim	•
principal stress theory. (C3)	10111
Stress Concentration, Stress Concentration Factors (C3):	
Understanding the phenomenon of stress concentration and its impact on	the
strength and integrity of machine components. (C3)	
Knowledge of stress concentration factors and their calculation methods	for
different geometric features and loading conditions. (C3)	
Variable Stress, Fatigue Failure, Endurance Limit (C3):	
Understanding the effects of variable stress and fatigue loading on mac	hine
components and their potential to cause failure. (C3)	
Knowledge of fatigue failure mechanisms, such as crack initiation	and
propagation, and the concept of endurance limit (fatigue strength). (C3)	
Design for Finite and Infinite Life, Soderberg and Goodman Criteria (C3):	
Understanding the concepts of finite life and infinite life design approaches	for
machine components. (C3)	
Familiarity with Soderberg and Goodman criteria for fatigue design, conside	ring
the combined effects of static and dynamic stresses. (C3)	
2 Riveted Joints (C4):	
Understanding the different types of rivets used in engineering application	ons,
such as solid rivets, tubular rivets, and blind rivets. (C4)	ľ
Knowledge of the materials commonly used for rivets, considering factors	such
as strength, corrosion resistance, and ease of installation. (C4)	ľ
Familiarity with caulking and fullering techniques used to secure rivets in p	lace
and ensure a tight joint. (C4)	
Ability to analyze riveted joints, considering factors such as load distribut	ion,

	stress concentration, and joint efficiency. (C4)
	Understanding the failures that can occur in riveted joints, such as shearing,
	bearing, and tearing, and methods for preventing them. (C4)
	Knowledge of specific applications of riveted joints, such as in boiler
	construction and the use of riveted brackets in structural assemblies. (C4)
	Welded Joints (C4):
	Understanding the different types of welded joints, including butt welds and
	fillet welds, and their respective strength characteristics. (C4)
	Ability to calculate the strength of butt and fillet welds based on factors such as
	weld size, material properties, and loading conditions. (C4)
	Knowledge of the behavior of eccentrically loaded welded joints and techniques
	for analyzing their strength and stability. (C4)
	Threaded Fasteners (C4):
	Understanding the stresses experienced by threaded fasteners, such as bolts and
	screws, under various loading conditions. (C4)
	Ability to consider the effects of initial tension (preload) on the performance
	and strength of threaded fasteners. (C4)
	Knowledge of design principles for threaded fasteners, including considerations
	for static, dynamic, and impact loads. (C4)
	Familiarity with methods for designing bolted joints under eccentric loading
	conditions, accounting for factors such as offset distance and resultant forces.
	(C4)
	Design of Temporary Joints (C3):
	Understanding the design considerations and applications of temporary joints,
	such as cotter joints and knuckle joints. (C3)
	Knowledge of the design principles for cotter joints, including cotter material
	selection, sizing, and proper installation. (C3)
	Familiarity with the design principles for knuckle joints, considering factors
2	such as pin diameter, clearance, and joint flexibility. (C3)
3	Design of Shafts (C4):
	Understanding the principles of shaft design, including considerations for
	torsion, strength, and rigidity. (C4)
	Ability to design solid and hollow shafts subjected to steady loading, ensuring
	adequate strength and rigidity based on material properties and design factors.
	(C4)
	Familiarity with relevant industry codes and standards such as ASME and BIS
	codes for power transmission shafting, ensuring compliance with safety and
	performance requirements. (C4)
	Knowledge of design principles for shafts subjected to combined loading
	conditions, such as bending, torsion, and axial loading, considering factors such

	as load distribution and stress concentration. (C4)
	Understanding the design principles for shafts subjected to fluctuating loads,
	including considerations for fatigue strength, endurance limit, and factors of
	safety. (C4)
	Design of Keys and Couplings (C3):
	Keys:
	Knowledge of the different types of keys used in engineering applications and
	their respective applications, such as parallel keys and tapered sunk keys. (C3)
	Understanding the design considerations for parallel and tapered sunk keys,
	considering factors such as key size, material selection, and fit tolerance. (C3)
	Ability to design square and rectangular sunk keys based on load requirements,
	keyway dimensions, and material properties. (C3)
	Couplings:
	Understanding the different types of couplings used in machinery, including
	rigid and flexible couplings, and their applications. (C3)
	Familiarity with the design principles for flange couplings, ensuring proper
	alignment, torque transmission, and ease of assembly. (C3)
	Knowledge of the design principles for bush and pin type couplings, considering
	factors such as load capacity, misalignment compensation, and vibration
	damping. (C3)
4	Design of Pipe Joints (C4):
	Understanding the design principles for circular, oval-shaped, and square
	flanged pipe joints, considering factors such as pipe material, operating
	conditions, and sealing requirements. (C4)
	Ability to select appropriate joint configurations, gaskets, and fasteners to
	ensure leak-proof and reliable pipe connections. (C4)
	Knowledge of industry standards and codes related to pipe joint design, such as
	ASME B31.1 and ASME B16.5, ensuring compliance with safety and
	performance requirements. (C4)
	Design of Helical Springs (C4):
	Understanding the types and applications of helical springs, such as
	compression springs, extension springs, and torsion springs. (C4)
	Familiarity with the properties and selection of spring materials based on factors
	such as strength, elasticity, and corrosion resistance. (C4)
	Ability to design helical springs to withstand static and variable loads,
	considering factors such as load-deflection characteristics, stress levels, and
	fatigue life. (C4)
	Knowledge of design considerations for spring ends, including end types
	(closed, open) and their effects on spring performance. (C4)
	Design of Leaf Springs (C3):

Understanding the design principles and applications of leaf springs in various industries, such as automotive and suspension systems. (C3) Familiarity with the selection and properties of leaf spring materials, considering factors such as strength, flexibility, and fatigue resistance. (C3) Ability to design leaf springs to withstand static and variable loads, ensuring proper deflection, stress distribution, and fatigue life. (C3) Knowledge of design considerations for leaf spring geometry, including the number of leaves, length, width, and curvature, to meet load requirements. (C3)

Teaching - Learning Strategies	Contact Hours
Lecture	30
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Teaching - Learning Strategies and Contact Hours

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessment	CO1	CO2	CO3	CO4
Assignment / Presentation	✓	✓	✓	✓

Mid Semester Exam	nination 1	✓	✓	✓	✓	
Mid Semester Exam	✓	✓	✓	✓		
University Examina		✓	✓	✓	✓	
						<u> </u>
Feedback Process		1. Student's Fee	edback			
		2. Course Exit S	Survey			
 Regular feed Feedback be 	ack is taken through various steps feedback through Mentor Mentee system. k between the semester through google forms. Exit Survey will be taken at the end of semester. (List of reference books) 1. Bhandari, V. B. (2016), "Design of Machine Elements", India:					<u> </u>
	McGraw-Hill Educa 2. Khurmi, R. S., Gupt India: Eurasia Publi	a, J. K. (2005). A	Textboo	ok of Ma	chine D	esign.

			I	Facu	lty of	f Eng	ginee	ring	and 🛛	Fechr	nolog	у			
Name of the Department					Ν	Mechanical Engineering									
Name of the Program					В	B. Tec	h.								
Course Code															
Course T	itle					I	nstru	ment	ation	and C	Contro	ol Engi	neerin	ıg	
Academi	c Year	•				I	Ι								
Semester	,					V	Ί								
Number	of Cre	dits				3									
Course P	rereq	uisite	:			E	Ingine	ering	Math	S					
Course S	° ° k o	_~				The objective of this course is to present su background in different instruments and sensors and th in control system design. This course combines know techniques, and methodologies from various sources techniques from transform theory and basic princ classical physics based upon which different instrume sensors are built.					rs and the nes know sources c princi	eir use vledge, using ple of			
Course O	utcome	es:				I									
At the end	of the	course	e, stuč	lents v	will be	able	to:								
CO1	Unc	lerstai	nd fun	dame	ntal el	emen	ts of i	nstrun	nentati	on, me	asuren	nent and	d contro	ol systen	ns.
CO2	Bui	ld ma	thema	tical r	nodels	s of si	mple	physic	al syst	ems us	sing tra	ansfer f	unction	s.	
CO3	Will be able to design a cont control system and implement						•		•	•	U		•	g the the	eory of
CO4	Can	easil	y iden	tify, f	ormul	ate, a	nd sol	ve eng	gineeri	ng prol	blems.				
Mapping Outcome		urse	Outc	omes	; (CO	s) to	Prog	ram (Outco	mes (]	POs)&	& Prog	ram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO2	PSO3
CO1	3	1	2	2	1	1	1	o 1	9 1	10	1	2	2	3	1
CO2	3	2	3	3	2	1	1	1	1	1	1	2	1	3	3
CO_2	1					1	1	1	1	1	1	2	_	3	3
	3	2	3	3	3	1								5	5
CO2 CO3 CO4	3	2	3	3	3	3	2	1	1	1	1	3	_	3	2
CO3	3	3					2	1	1	1	1	3	-		
CO3 CO4 Course	3	³ ent:	3		3	3	2 Week			1 Hours/					2

Content & Competencies
General concepts of Mechanical measuring instruments (C1):
Understanding the basic principles and functions of mechanical measuring
instruments used for various measurements in engineering and industrial
applications. (C1)
Familiarity with the components and working principles of mechanical
measuring instruments, including scales, pointers, dials, and measurement mechanisms. (C1)
Knowledge of common mechanical measuring instruments such as Vernier
calipers, micrometers, dial indicators, and depth gauges. (C1)
Elements of a measuring system (C2):
Understanding the components and elements of a measuring system, including
the primary sensing element, signal conditioning, data display, and recording devices. (C2)
Familiarity with the roles and functions of each element in a measuring system,
such as the transducer, amplifier, filter, and data acquisition system. (C2)
Knowledge of the interconnections and interfaces between different elements of
a measuring system to ensure accurate and reliable measurements. (C2)
Requirements of measuring instruments (C2):
Understanding the key requirements of measuring instruments, including
accuracy, precision, sensitivity, resolution, repeatability, and reliability. (C2)
Familiarity with the importance of calibration, maintenance, and periodic
verification of measuring instruments to ensure their proper functioning. (C2)
Knowledge of environmental factors, such as temperature, humidity, and
vibration, and their effects on the performance of measuring instruments. (C2)
Static and dynamic characteristics of measuring instruments (C3):
Understanding the static characteristics of measuring instruments, including linearity, hysteresis, zero offset, and sensitivity. (C3)
Familiarity with the dynamic characteristics of measuring instruments, such as
response time, natural frequency, and damping ratio. (C3)
Knowledge of the factors affecting the static and dynamic characteristics of
measuring instruments and their impact on measurement accuracy and
reliability. (C3)
Errors in measurements (C3):
Understanding the sources of errors in measurements, including systematic
errors (bias) and random errors (noise). (C3)
Familiarity with the types of errors, such as instrumental errors, environmental
errors, and human errors, and their effects on measurement results. (C3)
Knowledge of error analysis techniques, such as error propagation, statistical
analysis, and uncertainty calculations, to evaluate and minimize measurement

	errors. (C3)
	Introduction to Transducers and Sensors (C1):
	Understanding the basic concepts and principles of transducers and sensors in
	measurement systems. (C1)
	Familiarity with the role of transducers and sensors in converting physical
	quantities, such as temperature, pressure, displacement, and force, into electrical
	signals. (C1)
	Knowledge of the classification and types of transducers and sensors based on
	their working principles, such as resistive, capacitive, inductive, and optical $(C1)$
2	sensors. (C1)
2	Measurement of vibrations (C4):
	Understanding the principles and techniques used to measure vibrations in
	mechanical systems. (C4)
	Familiarity with accelerometers, which are commonly used sensors to measure
	vibration amplitude, frequency, and acceleration. (C4)
	Knowledge of vibration measurement techniques, such as frequency analysis,
	time-domain analysis, and modal analysis, to assess the dynamic behavior of
	structures and machinery. (C4)
	Measurement of Low, Medium, and High pressures (C3):
	Understanding the principles and instruments used to measure pressures across
	different ranges. (C3)
	Familiarity with pressure measurement devices, such as pressure gauges,
	pressure transducers, and pressure sensors, and their applications in various industries (C^2)
	industries. (C3)
	Knowledge of calibration techniques, pressure units, and pressure measurement (C^2)
	standards to ensure accurate and reliable pressure measurements. (C3)
	Measurement of temperature (C3):
	Understanding the methods and instruments used to measure temperature in $uarious$ applications (C2)
	various applications. (C3)
	Familiarity with different temperature measurement devices, including bi- metallic thermometers, thermocouples, resistance temperature detectors (RTDs),
	thermistors, and pyrometers. (C3)
	Knowledge of temperature measurement principles, temperature scales,
	calibration procedures, and temperature measurement ranges for different
	sensors. (C3)
	Measurement of flow (C3):
	Understanding the techniques and devices used to measure fluid flow rates. (C3)
	Familiarity with flow measurement instruments, such as hot wire anemometers,
	magnetic flow meters, and ultrasonic flow meters. (C3)
	Knowledge of flow measurement principles, flow velocity profiles, flow

	measurement standards, and calibration procedures for accurate flow rate
	determination. (C3)
3	Measurement of displacement (C3):
5	Understanding the principles and techniques used to measure linear and angular
	displacement in mechanical systems. (C3)
	Familiarity with displacement measurement devices, such as dial indicators,
	linear variable differential transformers (LVDTs), potentiometers, and encoders.
	(C3)
	Knowledge of calibration procedures, measurement resolution, and accuracy
	considerations for displacement measurement. (C3)
	Measurement of Force (C3):
	Understanding the principles and instruments used to measure force in
	mechanical systems. (C3)
	Familiarity with force measurement devices, such as proving rings, strain
	gauges, load cells, and piezoelectric sensors. (C3)
	Knowledge of calibration techniques, force units, and force measurement
	standards to ensure accurate and reliable force measurements. (C3)
	Measurement of torque (C3):
	Understanding the methods and instruments used to measure torque in rotating
	systems. (C3)
	Familiarity with torque measurement devices, such as torque wrenches, torque
	transducers, and strain gauge-based torque sensors. (C3)
	Knowledge of calibration procedures, torque units, and torque measurement
	standards to ensure accurate and reliable torque measurements. (C3)
	Measurement of Speed (C3):
	Understanding the techniques and devices used to measure rotational speed and
	linear speed. (C3)
	Familiarity with speed measurement instruments, such as tachometers,
	encoders, and proximity sensors. (C3)
	Knowledge of calibration procedures, speed units, and speed measurement
	techniques for accurate speed determination. (C3)
	Case study assignments (C4):
	Applying the knowledge and principles of measurement techniques to real-
	world case studies and practical scenarios. (C4)
	Analyzing and solving measurement-related problems, such as selecting
	appropriate measurement instruments, interpreting measurement data, and
	making informed decisions. (C4)
	Developing critical thinking and problem-solving skills through case study
	assignments focused on measurement applications and challenges. (C4)
4	Introduction to Control Systems (C2):

	Understanding the basic principles and concepts of control systems. (C2)
	Differentiating between open-loop and closed-loop control systems. (C2)
	Recognizing the role of servomechanisms in control systems. (C2)
	Transfer Function and Block Diagrams (C3):
	Understanding the concept of transfer functions and their significance in control
	systems. (C3)
	Applying block diagram reduction techniques using algebraic manipulations.
	(C3)
	Analyzing and simplifying complex control system diagrams using signal flow
	graphs. (C3)
	Controllers and Time Response (C3):
	Familiarity with different types of controllers used in control systems, such as
	proportional, integral, and derivative controllers. (C3)
	Analyzing the time response of first-order and second-order systems under
	different input signals. (C3)
	Solving problems related to time response analysis in control systems. (C3)
	Frequency Domain Analysis (C3):
	Understanding the concept of frequency domain analysis and its applications in
	control systems. (C3)
	Interpreting and plotting polar and Bode plots to analyze system response in the
	frequency domain. (C3)
	Identifying system stability using frequency domain analysis techniques. (C3)
	Stability Analysis (C3):
	Familiarity with stability concepts in control systems. (C3)
	Applying the Routh-Hurwitz criterion to determine system stability. (C3)
	Solving stability-related problems using the Routh-Hurwitz criterion. (C3)
	Exposure to Industrial Applications (C4):
	Gaining knowledge and awareness of current industrial trends and applications
	in control systems. (C4)
	Understanding the practical implementation and use of control systems in
	various industries. (C4)
	Analyzing case studies and examples of control systems used in real-world
	industrial settings. (C4)
Teaching - Lea	rning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
Lecture	25
Practical	
Seminar/Journal Club	5

Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessm	nent	CO1	CO2	CO3	CO4		
Assignment / Prese	ntation		✓	✓	✓	✓	
Mid Semester Exam	nination 1		✓	✓	✓	✓	
Mid Semester Exam	nination 2		✓	✓	✓	✓	
University Examin	ation		✓	✓	 ✓ 	✓	
Feedback Process		 Student's Fe Course Exit 					
 Students Feedback is taken through various steps Regular feedback through Mentor Mentee system. Feedback between the semester through google forms. Course Exit Survey will be taken at the end of semester. 							
References: (List of reference books)							

 Instrumentation and Control Paperback – 2011by Patranabis D. (ISBN- 10: 8120342461, ISBN- 13: 978-8120342460)
2. Instrumentation and Process Control Paperback – 2019 by D. C. Sikdar. (ISBN-10: 9789382609049, ISBN-13: 978-9382609049)
3. J.P. Holman (2004), Experimental Methods for Engineers, Tata McGraw-Hill (ISBN-10: 0070586748, ISBN-13: 978-0070586741)
4. I.J. Nagrath and M. Gopal (1999), Control Systems Engineering, New
Age Int. Pub (ISBN- 10: 9789386070111, ISBN-13: 978-9386070111)

				F	Faculty	of E	nginee	ering a	ind Tee	chnolo	gy							
Name of th	ne Dep	artm	ent		•		Mechanical Engineering											
Name of th	Name of the Program								B. Tech.									
Course Co																		
Course Tit	le					D	ynam	nics of	Mach	ines L	ab							
Academic	Year					Π	Ι											
Semester						V	Ί											
Number of	f Cred	its				1												
Course Pro	erequi	site				K	linema	atics o	f Macł	nines								
Course Sy	w o d al p	The objective of this Lab-work course is to provide students with sufficient hands-on experience in working on balancing of mechanisms, torsional and bending vibrations, typical dynamic effects such as the gyroscopic effect, damping and absorption etc. Upon completion, students should be able to practically analyze the effect of dynamic forces on systems and try to minimize the negative impact of such effects.																
Course Ou	tcome	es:					-											
At the end	of the	course	e, stud	lents v	will be	able	to:											
CO1	con	sidera	tion o	f geoi	netric	al and	lecon	omica	l const	raints.	_	ching pr						
CO2	Perf	form s	tatic a	und dy	namio	c bala	ncing	of hig	h-spee	d rotar	y and i	reciproc	cating r	nachines	5.			
CO3	Ana	ılyze f	ree an	nd for	ced vi	bratio	ns of 1	machi	nes, en	igines a	and stru	uctures.						
CO4	App	oly the	conc	ept of	gover	mors	for spe	eed co	ntrol.									
Mapping o	of Cou	rse O	utcon	nes (C	COs) t	o Pro	gram	Outc	omes (POs)	& Prog	gram Sj	pecific	Outcon	nes:			
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO 1	PSO2	PSO3			
CO1	3	2	3	2	1	_	-	-	1	-	1	3	3	3	1			
CO2	3	3	3	3	2	1	-	_	1	1	-	2	3	3	-			
CO3	3	2	2	2	3	1					1	2	3	2	-			
CO4	3	2	2	2	2	-	1	-	-	-	1	2	3	2	-			
Average	3	2.25	2.5	2.25	2	0.5	0.25	0	0.5	0.25	0.75	2.25	3	2.5	0.25			
Course Co	ntent:							-		•				•	•			
L (1	Hours/	Week	x)		T (H	ours/	Week)	P (1	Hours/	Week)	Total Hour/Week					
	0					0	0 2 2											
Sl.No.			Conte	nt &	Com	peten	cies											
1		To	perfor	rm ex	xperir	nent	on wa	att an	d Por	ter Go	verno	rs to p	repare	perfor	mance			

	characteristic Curves, and to find stability & sensitivity. (C3, C4)
2	To perform experiment on Proell Governors to prepare performance
	characteristic Curves, and to find stability & sensitivity. (C3, C4)
3	To perform experiment Hartnell Governors to prepare performance
	characteristic Curves, and to find stability & sensitivity. (C3, C4)
4	To study gyroscopic effects through models. (C3, C4)
5	To determine gyroscopic couple on Motorized Gyroscope. (C3, C4)
6	To perform the experiment for static balancing on static balancing machine.
	(C3,C4)
7	To perform the experiment for dynamic balancing on dynamic balancing
	machine.
	(C3, C4)
8	Determine the moment of inertial of connecting rod by compound pendulum
	method and tri-flair suspension pendulum. (C3, C4)
9	To study Dynamically equivalent system. (C2, C1)
10	To study various types of dynamometer. (C2, C1)

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	20	
Seminar/Journal Club		
Small Group Discussion (SGD)	4	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	6	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	30	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	VIVA
Viva-voce	Practical Examination & Viva-voce

 University Examination

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4			
VIVA	✓	✓	✓	✓			
Practical Log Book/ Record Book	✓	 ✓ 	✓	✓			
University Examination	✓	✓	 ✓ 	\checkmark			
Feedback Process		 Student's Feedback Course Exit Survey 					
	2. 00	uise Exit	Survey				

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

- 1. S.S. Rattan (2009), "Theory of Machines", 3rd Edition, Tata McGraw-Hill. ISBN: 978-0-070-14477-4.
- 2. A.Ghosh (2009), Theory of Mechanisms and Machines, 3rd Edition, East-West Press Pvt. Ltd., New Delhi, ISBN: 978-8-185-93893-6.
- 3. Thomas Bevan (2009), Theory of Machines, 3rd Edition, Pearson Education, ISBN: 978-8-131-72965-6.
- 4. Kenneth J Waldron and Gary L. Kinzel (2007), Kinematics, Dynamics, and Design of Machinery, 2nd Edition, John-Wiley and Sons Inc., New York, ISBN: 978-8-126-51255-3.

	Faculty		Engineering and Technology															
	Name of the Department Name of the Program								Mechanical Engineering									
		gram				В	B. Tech.											
Course Cod	le																	
Course Titl	e					F	luid M	Iachin	es Lat)								
Academic Y	lear					Π	Ι											
Semester						V	Ί											
Number of	Cred	its				1												
Course Pre	requi	site				F	luid N	lechar	nics &	Fluid	Machir	nes						
Course Syn	-					je R	ets, H	Iydra ynam	ulic T ic pu	Turbin	es, R	otary	motion	of Imp n of li ent pur	iquids,			
Course Out																		
At the end o	f the	course	e, stuc	lents	will be	able	to:											
CO1	Uno	dersta	nd th	e wo	rking	of ce	ntrifu	gal pı	imps	and re	ciproc	ating p	oumps					
CO2	Cal	culate	e forc	es an	nd wor	k doi	ne by	a jet o	on fixe	ed or r	noving	g plate	and cu	irved pl	ates			
CO3	Unc	dersta	nd th	e wo	rking	of tu	rbines	(Bot	h Imp	ulse a	nd Rea	action	turbine	:)				
CO4		alyze licatio		vorki	ng of a	air co	mpres	ssors	and se	elect th	ne suit	able or	ne for a	ı specifi	IC			
Mapping of	f Cou	rse O	utcon	nes (O	COs) t	o Pro	gram	Outc	omes ((POs)	& Prog	gram S	pecific	Outcom	nes:			
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO 1	PSO2	PSO3			
CO1	3	2	2	2	2	1	-	-	1	1	-	1	3	3	-			
CO2	3	2	3	2	2	1	-	-	1	-	-	1	3	3	-			
CO3	3	3	3	2	1	1	-	-	-	-	-	1	3	2	-			
CO4	3	3	2	3	2	-	1	-	-	-	-	1	3	3	-			
Average	3	2.5	2.5	2.25	1.75	0.75	0.25	0	0.5	0.25	0	1	3	2.75	0			
Course Cor	ntent:																	
L (H	lours/	/Week	x)		T (H	ours/	Week)	P (1	Hours/	Week)	Tota	l Hour/	Week			
	0					0				2				2				
Sl. No.			Conte	ent &	Com	peten	cies	I										
1		Impa	act of	jet or	n a flat	surfa	ce. (C	3, C4)										
		Impact of jet on a curved surface. (C3, C4)																

3	Conducting experiments and drawing the characteristic curves of Pelton turbine. (C3, C4)
4	Conducting experiments and drawing the characteristics curves of Francis turbine. (C3,
	C4)
5	Conducting experiments and drawing the characteristic curves of Kaplan turbine. (C3,
	C4)
6	Conducting experiments and drawing the characteristic curves of Gear pump. (C3, C4)
7	Conducting experiments and drawing the characteristic curves of reciprocating pump
	(C3, C4)
8	Conducting experiments and drawing the characteristic curves of centrifugal pump/
	submergible pump. (C3, C4)

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	22
Seminar/Journal Club	
Small Group Discussion (SGD)	2
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	6
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	30

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	VIVA
Viva-voce	Practical Examination & Viva-voce
	University Examination

Nature of Assessment	C01	CO2	CO3	CO4
VIVA	✓	 ✓ 	 ✓ 	✓
Practical Log Book/ Record Book	✓	✓	✓	✓
University Examination	✓	✓	 ✓ 	✓
Feedback Process		udent's Fe ourse Exit		
Students Feedback is taken through vari	ious steps			

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

- 1. S K Som, Introduction to Fluid Mechanics and Fluid Machines ,McGraw Hill Education India 2011
- 2. Bansal R. K., A Textbook of Fluid Mechanics and Hydraulic Machines, Laxmi Publications, 2005.
- 3. Cengel Y. A. and J. M. Cimbala, Fluid Mechanics, Tata McGraw Hill, 2013
- 4. Yahya S. M, Fans, Blower and Compressor, Tata McGraw Hill, 2005.
- 5. Rajput R. K, Fluid Mechanics and Hydraulic Machines, S. Chand & Co., 2006.

	Faculty of	Engineering and Technology					
Name of t	he Department	Mechanical Engineering					
Name of t	he Program	B. Tech.					
Course C	ode						
Course Ti	itle	Design of Machine Elements Lab					
Academic	e Year	III					
Semester		VI					
Number o	of Credits	1					
Course P	rerequisite	Engineering Graphics and Design					
Course Sy	ynopsis	Mechanical Machine Design is an essential course for mechanical engineering students. This course is an introduction to the basic principles of modern engineering. It provides the students with fundamental skills of engineering and the ability to apply the theories of science to practice and understand the factors; such as stresses, deformations, and failure criteria, influencing the machine elements like shafts, springs, belts, bearings, gears etc. The main objective of design of machine elements is that the machine should function properly to satisfy the needs of the customer and it should be safe against the predicted modes of failure.					
Course O	utcomes:						
At the end	of the course, students will	be able to:					
CO1	Explain the influence of steady and variable stresses in machine component design.						
CO2	Apply the concepts of desig	n to temporary and permanent joints.					
CO3	Apply the concepts of desig	n to shafts, keys and couplings.					
CO4	Apply the concepts of desig	Apply the concepts of design to Springs and Bearings.					

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	Р	РО	PO	PO	РО	PO	РО	РО	РО	РО	РО	РО	PSO1	PSO2	PSO3
	0 1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	2	2	1	1	1	1	1	1	1	3	2	3	1
CO2	3	2	2	2	1	1	1	1	1	1	1	2	1	3	2
CO3	3	2	2	2	1	1	1	1	1	1	1	2	1	3	3

CO4	3 3 3 3				3	3	1	1	1	1	1	1	3	1	3	3
Avera	verage 3 2.25 2.25 2.25				2.25	1.5	1	1	1	1	1	1	2.5	0.75	3	2.25
Cour	se C	Cont	ent:													
	L (Hours/Week) T (Hours/Week) Total Hour/												Week			
		0					0				2				2	
Unit	t Content & Competencies															
1	To	Desi	gn an	d Dra	w the	e Pern	naner	nt Join	nts: R	veted	Joints	s (C1,	C2)			
2	To	Desi	gn an	d Dra	w the	e Pern	naner	nt Join	nts: W	elded	Joints	s (C1,	C2)			
3	To	Desi	gn an	d Dra	w the	e Non	-Pern	nanen	ıt Join	ts: Bo	lted Jo	oints (C1, C	2,C3)		
4	To	Desi	gn an	d Dra	w the	e Non	-Pern	naner	ıt Join	ts: Co	otter Jo	oints (C1, C2	2,C3)		
5	To	Desi	gn an	d Dra	w the	e Non	-Pern	nanen	t Join	ts: Kn	uckle	Joints	s (C1,	C2)		
6	To	Desi	gn an	d Dra	w the	e Non	-Pern	nanen	t Join	ts: Mu	ıff Co	upling	g (C1,	C2)		
7	To	Desi	gn an	d Dra	w the	e Non	-Pern	nanen	t Join	ts: Fla	ange C	Coupli	ng (Cl	1, C2)		
8	To	Desi	gn an	d Dra	w the	e Non	-Pern	nanen	t Join	ts: Fle	exible	Coup	ling (C	C1, C2,0	C3)	
9	To	Desi	gn an	d Dra	w the	e Mac	hine	Elem	ents: S	Solid a	& Hol	low S	haft (C	C1, C2)		
10	To	Desi	gn an	d Dra	w the	e Mac	hine	Elem	ents:]	Helica	l & Lo	eaf Sp	rings	(C1, C2	2)	
11	To	Desi	gn an	d Dra	w the	e Mac	hine	Elem	ents:]	Flange	ed Pip	e Join	t (C1,	C2,C3)		
12	To	Desi	gn an	d Dra	w the	e Mac	hine	Elem	ents:	Ovel F	Pipe Jo	oint (C	21, C2	,C3)		

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	22
Seminar/Journal Club	
Small Group Discussion (SGD)	2
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	6
Case/Project Based Learning (CBL)	
Revision	
Others If any:	

Total Number of Contact Hours	30
Total Number of Contact Hours	50

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	VIVA
Viva-voce	Practical Examination & Viva-voce
	University Examination

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4
VIVA	✓	✓	 ✓ 	✓
Practical Log Book/ Record Book	✓	✓	 ✓ 	✓
University Examination	✓	✓	 ✓ 	✓
Feedback Process	1. Stu	dent's Fe	edback	
	2. Co	urse Exit	Survey	
 Students Feedback is taken through various Regular feedback through Mentor M Feedback between the semester thro Course Exit Survey will be taken at 	lentee sys ugh goog	gle forms.		
References:				
1. Bhandari, V. B. (2016), "Design of Mac	hine Elei	nents", Ii	ndia: Mc	Graw-Hill
Education(India), ISBN: 978933922112	26, 93392	21125		
2. Khurmi, R. S., Gupta, J. K. (2005). A Te	extbook o	of Machir	ne Design	n. India: Eurasia

PublishingHouse, ISBN: 9788121925372, 8121925371

]	Faculty	of E	ngine	ering a	ind Teo	chnolo	gy				
Name of th						Enginee									
Name of th				В	B. Tech.										
Course Co															
Course Tit	I	Instrumentation and Control Engineering Lab													
Academic	II	Ι													
Semester						V	Ί								
Number of	Cred	its				1									
Course Pre	erequi	site				E	ngine	ering	Maths						
Course Syr	iopsis					w ir aı fr	vith sunstrum nd mo om tr	fficien ents. ethodo ansfor	nt hand This o logies m theo	ls-on e course from ory and	experien comb variou l basic	nce in v ines kr is sour princip	working nowledg ces, us ble of cl	rovide s g with d ge, tech ing tech assical j nsors are	ifferent niques, nniques physics
Course Ou	tcome	es:													
At the end of	of the	course	e, stud	lents	will be	able	to:								
CO1	Den	nonstr	ate th	e var	ious pa	arame	ters of	f meas	ureme	nts usi	ng inst	rument	s.		
CO2	Det	ermin	e the 1	nagn	itude c	of para	ametri	c mea	sureme	ents su	ch as l	oad, tor	que and	d temper	rature.
CO3	Me	asure	displa	acem	ent and	l flow	using	diffe	ent ins	strume	nts.				
CO4	Mea	asure s	speed	and l	know t	he var	ious ι	ises of	strain	gauge	es.				
Mapping o	f Cou	rse O	utcon	nes (COs) t	o Pro	gram	Outc	omes (POs)	& Prog	gram S	pecific	Outcon	nes:
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO 1	PSO2	PSO3
CO1	3	1	2	2	1	1	0	1	0	0	0	3	2	3	1
CO2	3	2	3	3	2	1	0	0	0	1	1	3	1	3	3
CO3	3	2	3	3	2	1	0	0	0	0	1	3	-	3	3
CO4	3	3	3	3	3	2	0	0	1	1	0	3	-	3	2
Average	3	2	2.75	2.75	2	1.25	-	0.25	0.25	0.5	0.5	3	0.75	3	2.25
Course Co	ntent:														
L (E	Iours	/Weeł	x)		T (H	ours/	Week)	P (1	Hours	/Week)	Tota	l Hour/	Week
	0					0				2				2	
Sl. No.			Conte	nt &	: Comp	peten	cies	I							
1		To s	study	the c	charac	teristi	ics of	LVD	T. (C1	, C2)					
2 To measure the load using load cell. (C2, C3)															
2															

3	To measure the temperature using thermocouple. (C2, C4)
4	Measurement of torque using torque measurement setup. (C1, C2)
5	To measure the temperature using RTD. (C2,C3)
6	Speed measurement using stroboscope. (C2)
7	Flow measurement experiment. (C2)
8	DC motor speed control. (C2)
9	Experiment on Dynamometers. (C1, C2)
10	Strain Measurement using Strain Gauge. (C1, C2)

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	22	
Seminar/Journal Club		
Small Group Discussion (SGD)	2	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	6	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	30	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	VIVA
Viva-voce	Practical Examination & Viva-voce
	University Examination

Nature of Assessment	CO1	CO2	CO3	CO4
VIVA	1	✓	✓	✓
Practical Log Book/ Record Book	✓	✓	✓	\checkmark

University Examination	✓	✓	✓	✓	
Feedback Process	1. St	udent's F	eedback	· · · · · · · · · · · · · · · · · · ·	
	2. Course Exit Survey				
Students Feedback is taken through various steps1. Regular feedback through Mentor Mentee system.					
2. Feedback between the semester through google forms.					
3. Course Exit Survey will be taken at the end of semester.					
References:					

- 1. Instrumentation and Control Paperback 2011by Patranabis D. (ISBN-10: 8120342461, ISBN- 13: 978-8120342460)
- 2. Instrumentation and Process Control Paperback 2019 by D. C. Sikdar. (ISBN-10: 9789382609049, ISBN-13: 978-9382609049)
- 3. J.P. Holman (2004), Experimental Methods for Engineers, Tata McGraw-Hill (ISBN-10: 0070586748, ISBN-13: 978-0070586741)
- 4. I.J. Nagrath and M. Gopal (1999), Control Systems Engineering, New Age Int. Pub (ISBN- 10: 9789386070111, ISBN-13: 978-9386070111)

			I	Facul	lty of	f Eng	ginee	ring	and 7	Fechr	olog	у					
Name of the	he De	epart	ment			Ν	Iecha	nical	Engin	eering	5						
Name of the	he Pr	ograi	m B. Tech.														
Course Co	ode																
Course Ti	tle					F	luid	Powe	r Syst	em							
Academic	cademic Year					I	I										
Semester						V	VI										
Number o	f Cre	dits				3											
Course Pr	erequ	uisite	:			F	luid N	Mecha	anics								
Course Sy	ynopsisA fluid power system has a pump driven by a prime mover (such as an electric motor or IC engine) that converts mechanical energy into fluid energy. This fluid flow is used to actuate a device such as: A Hydraulic cylinder or Pneumatic cylinder, A Hydraulic motor or Pneumatic motor, A Rotary actuator etc.							onverts is used der or									
Course Ou	itcon	ies:						<u> </u>									
At the end	of the	e cou	rse, st	uden	ts wil	l be a	ble to):									
CO1		d the raulic						techno	ology i	n indu	stries	and to	obtain	knowle	dge on		
CO2								w inc.		the ph	ysical	laws af	fecting	fluid sta	indards		
CO3	Gai	n knov	wledg	e of th	nat ho	w to c	ontro	l the H	Iydrau	lic and	Pneun	natic Sy	stems.				
CO4	rela	ted to	pump	os.				_				-		solve pr	oblems		
Mapping o		urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (]	POs)&	k Prog	ram S	pecific			
Outcomes COs	: PO	PO	РО	РО	PO	PO	РО	РО	РО	РО	РО	РО	PS	PSO2	PSO3		
	1	2	3	4	5	6	7	8	9	10	11	12	01				
CO1	3	1	2	1	2	-	-	-	-	-	-	2	2	3	1		
CO2	3	2	2	2	2	-	-	-	-	-	-	2	1	3	3		
CO3	3	2	3	2	2	-	-	-	-	-	-	2	-	3	3		
CO4	3 2 3 3 3 - - - - - 2 - 3 2										2						
Average	3	1.75	2.5	2	2.25	-	-	-	-	-	-	2	0.75	3	2.25		
Course (Cont	ent:	1			1			1	1	1		1	1			

	schematics and diagrams (C2)
	schematics and diagrams. (C2)
	Understanding the different types of hydraulic pumps, such as gear pumps, vane
	pumps, and piston pumps, and their respective operating principles. (C2)
	Recognizing the relationship between pump flow and pressure in hydraulic
	systems. (C2)
	Understanding the concept of pump drive torque and power, which relates to the
	input power required to drive the pump. (C2)
	Familiarity with pump efficiency and its importance in evaluating the
	performance of hydraulic pumps. (C2)
	Air Compressor (C2):
	Identifying the graphic symbol used to represent an air compressor in
	schematics and diagrams. (C2)
	Understanding the different types of air compressors, such as reciprocating
	compressors, rotary screw compressors, and centrifugal compressors, and their
	respective operating principles. (C2)
	Recognizing the factors involved in compressor sizing, including the desired air
	flow rate and pressure requirements. (C2)
	Familiarity with the concept of vacuum pumps and their application in creating
	and maintaining a vacuum in pneumatic systems. (C2)
3	Cylinders (C2):
5	Understanding the function and application of cylinders in hydraulic and
	pneumatic systems. (C2)
	Identifying the various types of cylinders, such as single-acting and double-
	acting cylinders. (C2)
	Recognizing the graphic symbol used to represent cylinders in hydraulic and
	pneumatic schematics. (C2)
	Understanding the basic operation and principles of cylinders, including the
	conversion of fluid or air pressure into linear motion. (C2)
	Accumulators (C2):
	Understanding the purpose and function of accumulators in hydraulic systems.
	(C2)
	Recognizing the different types of accumulators, such as bladder, piston, and
	diaphragm accumulators. (C2)
	Understanding the role of accumulators in storing energy, absorbing shocks, and
	compensating for pressure fluctuations. (C2)
	FRL (Filter-Regulator-Lubricator) (C2):
	Understanding the purpose and function of FRL units in pneumatic systems.
	(C2)
	Recognizing the individual components of an FRL unit, including the filter,
	regulator, and lubricator. (C2)
	regulator, and lubricator. (C2)

	Understanding the importance of filtration pressure reculation and lubrication
	Understanding the importance of filtration, pressure regulation, and lubrication
	in maintaining proper pneumatic system operation. (C2)
	Directional Control Valves (C2):
	Understanding the function and application of directional control valves in
	hydraulic and pneumatic systems. (C2)
	Identifying the different types of directional control valves, such as spool valves
	and poppet valves. (C2)
	Familiarity with the symbols used to represent directional control valves in
	hydraulic and pneumatic schematics. (C2)
	Pressure Control Valves (C2):
	Understanding the function and application of pressure control valves in
	hydraulic systems. (C2)
	Recognizing different types of pressure control valves, such as relief valves,
	pressure reducing valves, and sequence valves. (C2)
	Understanding the role of pressure control valves in regulating and maintaining
	desired pressure levels in hydraulic systems. (C2)
	Flow Control Valves (C2):
	Understanding the function and application of flow control valves in hydraulic
	systems. (C2)
	Recognizing different types of flow control valves, such as throttle valves and
	flow restrictors. (C2)
	Understanding the role of flow control valves in regulating and controlling fluid
	flow rates in hydraulic systems. (C2)
	Electronic Control Components (C3):
	Understanding the function and application of electronic control components in
	hydraulic and pneumatic systems. (C3)
	Familiarity with electronic control components such as solenoid valves,
	proportional valves, and electronic sensors. (C3)
	Recognizing the symbols used to represent electronic control components in $\frac{1}{2}$
4	hydraulic and pneumatic schematics. (C3)
4	Introduction (C1):
	Understanding the basic concepts and principles of hydraulic systems. (C1)
	Recognizing the applications and advantages of hydraulic systems in various industrias $(C1)$
	industries. (C1)
	Familiarity with the components and terminology used in hydraulic systems.
	(C1) Sealing Devices (C2):
	Sealing Devices (C2): Understanding the importance of scaling devices in hydroulie systems. (C2)
	Understanding the importance of sealing devices in hydraulic systems. (C2)
	Identifying different types of sealing devices, such as O-rings, seals, and $gaskets$ (C2)
	gaskets. (C2)

	Recognizing the function and application of sealing devices in preventing fluid
	leakage in hydraulic systems. (C2)
	Reservoir System (C1):
	Understanding the purpose and function of the reservoir in a hydraulic system.
	(C1)
	Recognizing the components and features of a reservoir, such as the filler cap,
	breather, and drain plug. (C1)
	Understanding the role of the reservoir in storing hydraulic fluid, dissipating
	heat, and allowing for fluid expansion and contraction. (C1)
	Filters and Strainers (C2):
	Understanding the importance of filters and strainers in hydraulic systems. (C2)
	Identifying different types of filters and strainers, such as inline filters and
	suction strainers. (C2)
	Recognizing the function and application of filters and strainers in removing
	contaminants from hydraulic fluid and protecting system components. (C2)
	Beta Ratio of Filters (C3):
	Understanding the concept of the Beta ratio in hydraulic filters. (C3)
	Recognizing the significance of the Beta ratio in evaluating the filtration
	efficiency of hydraulic filters. (C3)
	Interpreting Beta ratio values to determine the effectiveness of a filter in
	removing particles of a certain size. (C3)
	Wear of Moving Parts (C2):
	Understanding the factors that contribute to the wear of moving parts in
	hydraulic systems. (C2)
	Recognizing the types of wear, such as abrasive wear, adhesive wear, and
	fatigue wear. (C2)
	Understanding the importance of proper lubrication, maintenance, and material
	selection in minimizing wear in hydraulic systems. (C2)
	Gases in Hydraulic Fluids (C2):
	Understanding the presence and effects of gases in hydraulic fluids. (C2)
	Recognizing the sources of gas contamination in hydraulic systems. (C2)
	Understanding the potential problems caused by gases, such as cavitation and
	foaming, and the methods to mitigate them. (C2)
	Temperature Control (C2):
	Understanding the importance of temperature control in hydraulic systems. (C2)
	Recognizing the factors that affect the temperature of hydraulic fluid, such as
	system load and ambient conditions. (C2)
	Familiarity with temperature control methods, such as cooling systems and heat
	exchangers, to maintain optimal operating temperatures. (C2)
	Troubleshooting (C3):
L	

Understanding the process of troubleshooting hydraulic systems. (C3) Recognizing common problems and malfunctions in hydraulic systems, such as leaks, pressure issues, and component failures. (C3) Applying systematic troubleshooting techniques to identify and resolve hydraulic system issues. (C3)

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours	
Lecture	25	
Practical		
Seminar/Journal Club	5	
Small Group Discussion (SGD)	5	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision	5	
Others If any:		
Total Number of Contact Hours	45	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessment	CO1	CO2	CO3	CO4
Assignment / Presentation	✓	✓	✓	~
Mid Semester Examination 1	✓	✓	✓	~

Mid Semester Examination 2	~	✓	√	✓
University Examination	~	~	~	✓

Feedback Process	s 1. Student's Feedback					
2. Course Exit Survey						
Students Feedback is taken through various	gh various steps					
1. Regular feedback through Mentor M	Ientee system.					
2. Feedback between the semester thro	between the semester through google forms.					
3. Course Exit Survey will be taken at the end of semester.						
References: (List of reference books						
(i)M. Rabie (2009), Fluid power Engineering, McGraw-Hill, NY, ISI						
071-62246-2.	071-62246-2.					
ii) Espositho (2009), Flui	ii) Espositho (2009), Fluid power with application, 6th edition, Prentice Hall,					
ISBN: 978- 81-7758- 580	ISBN: 978- 81-7758- 580-3.					
	iii) Robert P. Kokernak (1999), Fluid power technology, 2nd edition, Prentice					
Hall, ISBN: 978-0-139-						
12487-7.						

Faculty of Engineering and Technology				
Name of the Department	Mechanical Engineering			
Name of the Program	B. Tech.			
Course Code				
Course Title	Design for Manufacturing & Assembly			
Academic Year	III			
Semester	VI			
Number of Credits	3			
Course Prerequisite	Engineering Workshop, Manufacturing Processes and			
	Technology			
Course Synopsis	The Design for Manufacturing & assembly is challenging subject that includes design principles for manufacturability and Influencing factors on Design. To learn about the machining, casting and environmental consideration while design. The aim of present course is to introduce and aware students about the basic design process with general design principles which based on different aspects of manufacturing as well assembly			

Course Outcomes:

At the end of the course, students will be able to:

CO1	Get to know about various internal and external characteristic of material affecting design.
CO2	To know general design principles for manufacturability.
CO3	Introduction of basic design process based on different aspects of different manufacturing processes like machining, drilling etc.
CO4	Student will have idea about various phases in the life of a product.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	3	3	2	2	-	-	-	-	-	-	3	3	2	1
CO2	3	3	3	3	2	-	-	-	-	-	-	2	3	-	-
CO3	3	2	2	2	2	-	-	-	-	-	-	2	3	-	1
CO4	3	-	-	-	2	-	-	-	-	-	-	3	3	1	1
Average	3	2.7	2.7	2.3	2.0	-	-	-	-	-	-	2.5	3	0.75	0.75

3 0 Unit Content & Competencies 1 Strength and Mechanical Factors (C2): Understanding the concept of strength and (C2) Familiarity with mechanical factors such Recognizing the significance of consider the design and analysis of mechanical content	as stress, strain,	Total Hour/Week 3
3 0 Unit Content & Competencies 1 Strength and Mechanical Factors (C2): Understanding the concept of strength an (C2) Familiarity with mechanical factors such Recognizing the significance of consider the design and analysis of mechanical cor	0 nd its importanc as stress, strain,	3
Unit Content & Competencies 1 Strength and Mechanical Factors (C2): Understanding the concept of strength an (C2) Familiarity with mechanical factors such Recognizing the significance of consider the design and analysis of mechanical cor	nd its importanc as stress, strain,	
1 Strength and Mechanical Factors (C2): Understanding the concept of strength and (C2) Familiarity with mechanical factors such Recognizing the significance of consider the design and analysis of mechanical content	as stress, strain,	e in mechanical desigr
Understanding the concept of strength an (C2) Familiarity with mechanical factors such Recognizing the significance of consider the design and analysis of mechanical con	as stress, strain,	e in mechanical desigr
 Mechanism Selection (C2): Understanding the process of selecting application. (C2) Recognizing different types of mechaniss belts. (C2) Evaluating the advantages, limitations, a based on design requirements and constrate Evaluation Method (C3): Understanding the methods used to evalue of mechanical systems. (C3) Recognizing the importance of perforreliability, and durability. (C3) Applying evaluation methods, such as simthe performance and behavior of mechanical systems. Process Capability (C2): Understanding the importance of process capability and consistency. (C2) Evaluating process capability using state process capability indices (Cp, Cpk) and of Feature Tolerances (C2): Understanding the concept of tolerance variation in dimensions. (C2) 	mponents and st g appropriate m sms, such as linit and suitability of aints. (C2) uate the perform ormance criteria mulation, testing ical systems. (C pability in manu capability in manu capability in acl attistical tools an control charts. (d mechanical factors i tructures. (C2) echanisms for a give kages, gears, cams, an of different mechanism nance and effectivenes a, such as efficiency g, and analysis, to asses (3) facturing. (C2) hieving desired produc nd techniques, such a (C2)

	Geometric Tolerances (C3):
	Understanding the concept of geometric tolerancing and its importance in
	defining acceptable geometric variation. (C3)
	Recognizing different geometric tolerance symbols and their meanings, such as
	straightness, flatness, and circularity. (C3)
	Applying geometric tolerances to control form, orientation, and location of
	features in mechanical components. (C3)
	Assembly Limits (C2):
	Understanding the concept of assembly limits and their role in ensuring proper fit and functionality of mechanical assemblies. (C2)
	Recognizing the importance of dimensional tolerances and clearance allowances
	in determining assembly limits. (C2)
	Applying assembly limits to specify acceptable dimensional variation in mating
	parts and components. (C2)
	Datum Features (C2):
	Understanding the concept of datum features and their role in establishing
	reference points for dimensional control. (C2)
	Recognizing different types of datum features, such as planes, holes, and
	surfaces. (C2)
	Applying datum features to establish a coordinate system and control
	dimensional relationships in mechanical assemblies. (C2)
	Tolerance Stacks (C3):
	Understanding the concept of tolerance stacks and their importance in assessing
	the cumulative effects of dimensional variation. (C3)
	Recognizing the methods and techniques used to analyze and manage tolerance
	stacks. (C3)
	Applying tolerance stack analysis to ensure proper fit, functionality, and
	manufacturability of mechanical assemblies. (C3)
2	Working Principle (C2):
	Understanding the fundamental working principles of mechanical components
	and systems. (C2)
	Familiarity with the principles of operation for various mechanical devices, such
	as gears, bearings, valves, and actuators. (C2)
	Applying the working principles to analyze and design mechanical systems.
	(C2)
	Material (C2):
	Understanding the importance of material selection in mechanical design. (C2)
	Familiarity with different types of engineering materials, such as metals,
	polymers, ceramics, and composites. (C2)
	Evaluating material properties, including mechanical, thermal, and chemical
L	

	designing features. (C3)
	Considering the capabilities and limitations of machining processes when
	Incorporating design features that enhance the machinability of the part. (C3)
3	Design features to facilitate machining (C3):
	forgings, and castings. (C2)
	Applying appropriate design guidelines and standards for welded members,
	considerations for each process. (C2)
	Recognizing the structural integrity, load-bearing capacity, and manufacturing
	and castings. (C2)
	Understanding the design considerations specific to welded members, forgings,
	Form Design of Welded Members, Forgings, and Castings (C2):
	selected materials. (C2)
	Optimizing form design to leverage the unique properties and capabilities of
	design of components. (C2)
	Considering material properties, such as strength, stiffness, and ductility, in the
	shape of mechanical components. (C2)
	Recognizing how material properties and characteristics affect the form and
	Influence of Materials on Form Design (C2):
	decisions. (C2)
	Evaluating and comparing different material options to make informed
	environmental impact when choosing materials. (C2)
	Considering factors such as material properties, availability, cost, and
	functionality of mechanical components. (C2)
	Understanding the influence of material selection on the performance and
	Materials Choice (C2):
	manufacturability, and other criteria. (C3)
	Selecting the most suitable design solution based on performance, cost,
	Evaluating the feasibility and effectiveness of different design alternatives. (C3)
	solutions for a given problem. (C3)
	Applying engineering principles and knowledge to generate multiple design
	Design - Possible Solutions (C3):
	process. (C2)
	Considering manufacturing constraints and limitations during the design
	forging, and welding. (C2)
	Recognizing different manufacturing techniques, such as machining, casting,
	components. (C2)
	Understanding the manufacturing processes involved in producing mechanical
	Manufacture (C2):
	characteristics, for specific design applications. (C2)
	characteristics for specific design applications $(C2)$

Collaborating with manufacturing angineers to antimize the design for ease of
Collaborating with manufacturing engineers to optimize the design for ease of
machining. (C3)
Drills (C3):
Designing holes with appropriate diameters and depths for drilling operations.
(C3)
Providing adequate access and clearance for drill bits. (C3)
Ensuring proper alignment and orientation of drilled holes. (C3) Milling Cutters (C3):
Designing features that can be machined using milling cutters, such as slots,
pockets, and contours. (C3)
Optimizing the geometry of the part to minimize the number of milling
operations required. (C3)
Considering the size and type of milling cutter needed for specific machining
tasks. (C3)
Keyways (C3):
Incorporating keyways to provide secure and accurate positioning of
components. (C3)
Ensuring proper dimensions and tolerances for keyways to accommodate keys
and key stock. (C3)
Designing keyways with sufficient clearance and accessibility for machining.
(C3)
Doweling Procedures (C3):
Including dowel holes or features for precise alignment and assembly of
components. (C3)
Designing dowel holes with appropriate sizes and tolerances for dowel pins.
(C3)
Providing access for drilling dowel holes during the machining process. (C3)
Counter Sunk Screws (C3):
Incorporating counter sunk screw holes for flush mounting and fastening. (C3)
Designing counter sink angles and dimensions to accommodate specific screw
sizes and types. (C3)
Ensuring proper alignment and accessibility for machining counter sunk screw
holes. (C3)
Reduction of Machined Area (C4):
Minimizing the amount of material that needs to be machined through
thoughtful design. (C4)
Utilizing design techniques such as hollowing out or removing unnecessary
material to reduce machining requirements. (C4)
Considering the structural integrity and functional requirements while reducing
the machined area. (C4)

	Simplification by Separation (C4):
	Breaking down complex features or components into simpler and more
	manageable parts. (C4)
	Designing separate components that can be machined individually and then
	assembled. (C4)
	Improving manufacturing efficiency by reducing the complexity of machining
	operations. (C4)
4	Redesign of castings based on parting line considerations (C4):
	Analyzing the parting line of the casting to ensure proper mold separation
	during the casting process. (C4)
	Redesigning the part geometry to facilitate a more efficient and effective parting
	line. (C4)
	Minimizing undercuts and complex features that can complicate the mold
	design and increase production costs. (C4)
	Minimizing core requirements (C4):
	Optimizing the part design to minimize the need for intricate or large cores in
	the casting process. (C4)
	Reducing the complexity of internal features that require cores, which can
	streamline the casting process. (C4)
	Exploring alternative design approaches to eliminate or simplify the use of cores
	in the casting design. (C4)
	Machined holes (C3):
	Assessing the feasibility of incorporating machined holes directly into the
	casting design. (C3)
	Redesigning the casting to include features that can be machined rather than
	requiring additional drilling or machining operations. (C3)
	Ensuring proper tolerances, access, and alignment for machined holes within the
	casting. (C3)
	Re-design of cast members to obviate cores (C4):
	Evaluating the possibility of redesigning the casting to eliminate the need for
	specific core features. (C4)
	Redistributing material or modifying the geometry to achieve the desired
	functionality without relying on cores. (C4)
	Considering alternative casting methods or approaches that can help eliminate
	or simplify core requirements. (C4)
	Identification of uneconomical design (C4):
	Assessing the design for potential inefficiencies or cost-intensive features in the
	casting process. (C4)
	Identifying areas where design modifications can lead to improved
	manufacturing efficiency and reduced costs. (C4)
L	

Considering factors such as material usage, machining requirements, and
production complexity in the evaluation of design economics. (C4)
Modifying the design (C4):
Making necessary design changes to improve the manufacturability and cost-
effectiveness of the casting. (C4)
Collaborating with casting engineers and manufacturers to refine the design
based on their expertise and recommendations. (C4)
Balancing functional requirements, cost considerations, and manufacturability
in the design modification process. (C4)
Group technology (C4):
Applying the principles of group technology to identify common features and
design elements that can be standardized or grouped together for more efficient
casting production. (C4)
Analyzing the design for opportunities to standardize components, processes, or
materials to streamline manufacturing. (C4)
Implementing design strategies that enable the use of modular or standardized
components in casting production. (C4)
Computer Applications for DFMA (C5):
Utilizing computer-aided design (CAD) software and simulation tools to
optimize the casting design for manufacturing and assembly. (C5)
Applying computer-aided engineering (CAE) techniques for virtual casting
simulations and analysis to identify potential issues and optimize the design
before production. (C5)
Employing design for manufacturing and assembly (DFMA) software tools to
evaluate the cost, manufacturability, and assembly efficiency of the casting
design. (C5)
Recent trends and promising techniques for designing components for
manufacturing (C6):
Staying updated with the latest advancements in casting design techniques,
materials, and technologies. (C6)
Exploring emerging trends such as additive manufacturing, advanced casting
methods, and optimization algorithms for design improvements. (C6)
Investigating innovative approaches such as generative design, topology
optimization, and digital twin simulations for enhanced casting design and
manufacturing. (C6)
Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
Lecture	33
Practical	

Seminar/Journal Club	2
Small Group Discussion (SGD)	2
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	6
Case/Project Based Learning (CBL)	
Revision	2
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	
Journal Club	

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4			
Assignment / Presentation		✓	 ✓ 	✓	✓		
Mid Semester Examination 1			✓	✓	 ✓ 	 ✓ 	
Mid Semester Examination 2		 ✓ 	 ✓ 	 ✓ 	✓		
University Examination	✓	✓	✓	~			
			1	1		1	
Feedback Process	1	. Student's Fe	edback				
	2	2. Course Exit	Survey				
Students Feedback is taken throug	gh various st	eps					
1. Regular feedback through Mentor Mentee system.							
2. Feedback between the semester through google forms.							
3 Course Exit Survey will be taken at the end of semaster							

3. Course Exit Survey will be taken at the end of semester.

5. Course Exit but vey will be taken at the end of semester.						
References:	(List of reference books)					

1.	Kevien Otto and Kristin Wood, Product Design. Pearson Publication, 2004, ISBN-13 :-9780130212719
2.	Product design and development, by K.T. Ulrich and S.D. Eppinger, Tata McGraw Hill, ISBN 9780070146792
3.	Boothroyd, G, Heartz and Nike, Product Design for Manufacture, Marcel
	Dekker, 1994, ISBN 978-0824791766

Faculty of Engineering and Technology					
Name of the Department	Mechanical Engineering				
Name of the Program	B. Tech.				
Course Code					
Course Title	Supply Chain and Logistic Managements				
Academic Year	III				
Semester	VI				
Number of Credits	3				
Course Prerequisite	Nil				
Course Synopsis	This is a course in supply chain management (SCM), a term which denotes the integration of key business processes from end user through original suppliers for the purpose of adding value for the firm, its key Supply chain members, to include customers and other stakeholders. This course presents a framework for SCM that requires cross-functional integration of key business processes within the firm and across the network of firms that comprise the supply chain.				
Course Outcomes:					

CO1	Understanding the concept of Logistic Managements.
CO2	Understanding the concept of Supply Chain Management.
CO3	Understanding the concept of matching Supply and Demand.
CO4	Understanding the concept of Strategic Management.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO	РО	PO	РО	РО	PO	PO	PO	РО	РО	РО	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	-	-	-	1	2	-	2	2	1	3	2	1	-	-
CO2	3	-	-	-	-	3	-	2	3	1	3	2	1	-	-
CO3	3	-	-	-	2	2	-	3	2	1	3	3	1	-	-
CO4	3	-	-	-	-	3	-	3	2	1	3	2	1	-	-
Average	3	-	-	-	1.5	2.5	-	2.5	2.25	1	3	2.25	1	-	-
Average	3	-	-	-	1.5	2.5	-	2.5	2.25	1	3	2.25	1	-	

L (I	Hours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week		
	3	0	0	3		
Unit	Content	& Competencies				
Unit 1	3 0 0 3 Content & Competencies Logistic Managements Introduction (C1): Understanding the basics of logistics management and its importance in chain operations. (C1) Exploring the role of logistics in achieving operational efficiency and constitution. (C1) Recognizing the key components and activities involved in 1 management. (C1) Logistics system design (C2): Analyzing the structure and design of logistics systems to meet condemands and optimize operational performance. (C2) Evaluating factors such as network design, facility location, transpinodes, and inventory management in logistics system design. (C2) Balancing cost considerations, service levels, and sustainability in de logistics systems. (C2) Demand planning (C2): Understanding the process of demand planning in logistics management. Analyzing historical data, market trends, and customer insights to the demand accurately. (C2) Utilizing demand planning techniques and tools to optimize inventory					
	management Exploring the through var platforms, wi Designing an segments and	. (C3) e challenges and oppo tious channels such holesalers, and distrib	multiple channel dis ortunities associated wi as brick-and-mortan utors. (C3) ion networks that cate	th distributing products stores, e-commerce		

multiple channel system. (C3) Addressing issues related to inventory allocation, order fulfillment, customer service, and channel coordination. (C3) Implementing strategies to ensure seamless integration and collaboration across multiple channels. (C3) Model development (C4): Developing models and analytical tools to optimize logistics operations and decision-making. (C4) Utilizing mathematical modeling, simulation, and optimization techniques to improve logistics system performance. (C4) Incorporating factors such as demand variability, transportation costs, service levels, and capacity constraints in model development. (C4) Concept of warehousing (C2): Understanding the role and significance of warehousing in logistics management. (C2) Exploring different types of warehouses, such as distribution centers, crossdocking facilities, and fulfillment centers. (C2) Analyzing factors such as location, layout, storage systems, and inventory management in warehouse design and operations. (C2) Methods of storage (C3): Examining different methods and techniques for storage and inventory management in warehouses. (C3) Evaluating storage systems such as pallet racks, shelving, mezzanines, and automated storage and retrieval systems (AS/RS). (C3) Optimizing storage layouts, picking strategies, and space utilization in warehouse operations. (C3) Primary and secondary transportation (C2): Understanding the concepts of primary and secondary transportation in logistics management. (C2) Differentiating between modes of transportation, such as road, rail, air, and sea, and their suitability for different types of goods and distances. (C2) Managing transportation operations, including carrier selection, route optimization, freight consolidation, and tracking. (C2) Logistics information system (C3): Understanding the role of information systems in managing logistics operations

	
	and supply chain visibility. (C3) Exploring technologies such as warehouse management systems (WMS), transportation management systems (TMS), and enterprise resource planning (ERP) systems in logistics information management. (C3) Leveraging data analytics, real-time tracking, and integration with trading partners to enhance logistics processes and decision-making. (C3) Logistics costing (C4):
	Understanding the cost components and financial implications of logistics activities. (C4)
	Analyzing cost drivers, such as transportation, inventory holding, warehousing, and order processing, in logistics costing. (C4)
	Applying cost management techniques, including activity-based costing (ABC), cost benchmarking, and cost reduction strategies, in logistics operations. (C4)
2	Supply Chain Management Understanding the Supply Chain (C1):
	Gaining knowledge of the components, activities, and entities involved in a supply chain. (C1) Understanding the interdependencies and flows of materials, information, and funds within a supply chain. (C1) Recognizing the importance of effective supply chain management in achieving organizational goals. (C1) Process view (C2):
	Viewing the supply chain as a series of interconnected processes that transform inputs into outputs. (C2)
	Analyzing and mapping the various processes within a supply chain to identify bottlenecks, inefficiencies, and areas for improvement. (C2) Implementing process improvement strategies, such as lean management and Six Sigma, to optimize supply chain performance. (C2) Decision phases and importance of supply chain (C2):
	Identifying the different decision phases in supply chain management, including strategic, tactical, and operational decisions. (C2) Understanding the significance of effective decision-making at each phase to ensure alignment with organizational goals and customer requirements. (C2) Recognizing the impact of supply chain decisions on key performance metrics, such as cost, quality, delivery, and customer satisfaction. (C2) Supply chain management and logistics (C2):

Understanding the relationship between supply chain management and logistics. (C2)
Recognizing logistics as a key function within supply chain management, responsible for the efficient movement of goods, information, and resources.
(C2) Exploring the various activities and processes involved in logistics, such as transportation, warehousing, inventory management, and order fulfillment. (C2) Supply chain and the value chain (C3):
Understanding the concept of the value chain and its relationship to the supply chain. (C3)
Recognizing that the supply chain is a critical component of the value chain, responsible for creating and delivering value to customers. (C3)
Identifying opportunities to add value at each stage of the supply chain, from sourcing raw materials to delivering finished products to end customers. (C3) Competitive advantage (C3):
Understanding the role of the supply chain in gaining and sustaining competitive advantage. (C3)
Recognizing that an efficient and effective supply chain can contribute to cost reduction, quality improvement, faster response times, and enhanced customer satisfaction, leading to a competitive edge. (C3)
Analyzing the strategic alignment between supply chain capabilities and overall business strategy to achieve competitive advantage. (C3) Supply chain and competitive performance (C4):
Examining the relationship between supply chain performance and overall competitive performance. (C4)
Understanding that a well-managed supply chain can positively impact key performance indicators, such as market share, profitability, market responsiveness, and customer loyalty. (C4)
Monitoring and measuring supply chain performance metrics to identify areas of improvement and enhance competitive performance. (C4) Changing competitive environment (C4):
Recognizing the dynamic and evolving nature of the competitive environment
and its impact on supply chain management. (C4)
Understanding the need for agility, flexibility, and adaptability in supply chain strategies to respond to changing market conditions, customer preferences, and technological advancements. (C4)

	Anticipating and proactively addressing potential disruptions and risks in the supply chain to maintain a competitive edge. (C4) Supply Chain drivers and obstacles (C3): Identifying the key drivers that influence supply chain performance, such as demand variability, lead time, inventory levels, transportation costs, and supplier relationships. (C3)
	Understanding the obstacles and challenges faced in managing a supply chain, including lack of coordination, information asymmetry, supply chain disruptions, and sustainability issues. (C3) Developing strategies to mitigate obstacles and leverage drivers to optimize
3	supply chain performance and achieve strategic objectives. (C3) Matching supply and demand (C4):
	Recognizing the importance of aligning supply and demand within the supply chain. (C4) Understanding the challenges associated with matching supply and demand, such as lead time gaps, variability in demand, and fluctuations in market conditions. (C4) Developing strategies and techniques to effectively balance supply and demand to meet customer requirements and optimize operational efficiency. (C4) The lead time gap (C4):
	Understanding the concept of lead time and its impact on supply chain operations. (C4) Recognizing the lead time gap as the time difference between customer demand and the time required to fulfill that demand. (C4) Implementing measures to reduce lead time gaps, such as improving production and delivery processes, enhancing supply chain visibility, and adopting agile and responsive strategies. (C4) Improving the visibility of demand (C4):
	Recognizing the importance of accurate and timely demand information in supply chain planning and execution. (C4) Implementing demand forecasting techniques and demand sensing tools to improve the visibility of demand signals. (C4) Utilizing technologies such as advanced analytics, artificial intelligence, and machine learning to enhance demand visibility and accuracy. (C4) Supply chain fulcrum (C4):

Understanding the concept of the supply chain fulcrum as a strategic focal point
for balancing supply and demand. (C4)
Identifying the critical components and processes within the supply chain that
need to be optimized to achieve a balanced and efficient supply and demand
relationship. (C4)
Developing strategies to leverage the supply chain fulcrum, such as optimizing
inventory levels, improving production flexibility, and enhancing collaboration
with suppliers and customers. (C4)
Forecast for capacity (C4):
Recognizing the importance of capacity planning in meeting future demand
requirements. (C4)
Using demand forecasts to assess and plan for the necessary capacity in terms of
production capabilities, resources, and infrastructure. (C4)
Employing techniques such as capacity modeling, scenario analysis, and
capacity utilization optimization to ensure sufficient capacity to meet forecasted
demand. (C4)
Execute against demand (C4):
Implementing effective strategies to execute and fulfill customer demand. (C4)
Optimizing production scheduling, inventory management, and logistics
operations to meet customer requirements in a timely manner. (C4)
Deploying agile and responsive supply chain practices to quickly adapt to
changes in demand and ensure on-time delivery. (C4)
Demand management and aggregate planning (C3):
Understanding the importance of demand management and aggregate planning
in aligning supply and demand. (C3)
Implementing demand management strategies, such as demand shaping, pricing
strategies, and promotions, to influence and manage customer demand. (C3)
Conducting aggregate planning to optimize production and resource allocation
based on forecasted demand patterns and operational constraints. (C3)
Collaborative planning, forecasting, and replenishment (C4):
Recognizing the value of collaborative efforts between supply chain partners in
managing supply and demand. (C4)
Engaging in collaborative planning, forecasting, and replenishment (CPFR)
initiatives to share information, synchronize activities, and improve forecast
accuracy. (C4)
Utilizing technology-enabled platforms and systems to facilitate real-time data

	sharing, collaborative decision-making, and efficient replenishment processes. (C4)
4	Creating the responsive supply chain (C5):
	Understanding the importance of a responsive supply chain in meeting customer demands and adapting to market changes. (C5) Implementing strategies to build a responsive supply chain, such as agile manufacturing, flexible capacity planning, and quick response to customer needs. (C5) Adopting technologies and tools that enable real-time visibility, collaboration, and data-driven decision-making to enhance responsiveness. (C5) Product 'push' versus demand 'pull' (C5):
	 Recognizing the difference between a product-centric approach (push) and a customer-centric approach (pull) in supply chain management. (C5) Understanding the benefits and challenges associated with each approach and their impact on inventory levels, customer satisfaction, and overall supply chain performance. (C5) Implementing demand-driven strategies, such as demand sensing, just-in-time production, and postponement, to align supply with actual customer demand. (C5) The Japanese philosophy (C6):
	Understanding the principles and practices of the Japanese philosophy in supply chain management, such as lean manufacturing, continuous improvement (kaizen), and total quality management (TQM). (C6) Learning from the successful implementation of Japanese manufacturing techniques and applying them to improve supply chain performance, reduce waste, and enhance customer value. (C6) Embracing a culture of collaboration, employee empowerment, and customer focus as integral parts of the Japanese philosophy. (C6) Foundations of agility (C5):
	Understanding the foundational elements of an agile supply chain, including flexibility, responsiveness, adaptability, and resilience. (C5) Incorporating agility into supply chain design, operations, and decision-making processes to quickly respond to market changes, customer demands, and disruptions. (C5) Implementing strategies such as modular design, supplier collaboration, risk management, and agile logistics to enhance supply chain agility. (C5)

Route map to responsiveness (C5):
Developing a route map or strategic roadmap to guide the transformation of the supply chain towards greater responsiveness. (C5) Identifying key milestones, objectives, and initiatives that will enable the
organization to become more agile and responsive in its supply chain operations. (C5)
Monitoring progress, adjusting strategies, and continuously improving the route map to ensure ongoing responsiveness to market dynamics and customer expectations. (C5) Strategic lead-time management (C5):
Recognizing the significance of lead time in supply chain performance and
competitiveness. (C5) Implementing strategies to reduce lead time, such as process optimization, supply chain collaboration, information sharing, and advanced planning systems. (C5)
Managing lead time variability and uncertainty through risk management, contingency planning, and buffer stock strategies. (C5) Time-based competition (C5):
Understanding the importance of time as a competitive advantage in the marketplace. (C5)
Emphasizing speed, responsiveness, and efficiency in supply chain processes to gain a competitive edge. (C5)
Implementing time-based strategies such as quick response (QR), time-based pricing, time-to-market optimization, and fast order fulfillment. (C5) Logistics pipeline management (C4):
Understanding the concept of the logistics pipeline and its role in supply chain management. (C4)
Managing the flow of materials, information, and products through the pipeline to ensure timely and efficient delivery. (C4)
Implementing strategies for pipeline management, such as demand forecasting, inventory optimization, transportation planning, and warehouse management. (C4)
Planning and managing inventories in a supply chain (C4):
Recognizing the importance of effective inventory planning and management in achieving supply chain efficiency and customer satisfaction. (C4)

Analyzing economies of scale in supply chain cycle inventory to optimize production and storage costs. (C4) Developing strategies to manage uncertainty in supply chain demand and supply, such as safety stock, reorder point planning, and demand-driven inventory replenishment. (C4) Determining the optimal level of product availability through demand forecasting, service level agreements, and customer segmentation. (C4)

Teaching - Learning Strategies	Contact Hours				
Lecture	25				
Practical					
Seminar/Journal Club	5				
Small Group Discussion (SGD)	5				
Self-Directed Learning (SDL) / Tutorial					
Problem Based Learning (PBL)	5				
Case/Project Based Learning (CBL)					
Revision	5				
Others If any:					
Total Number of Contact Hours	45				

Teaching - Learning Strategies and Contact Hours

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4
Assignment / Presentation	✓	✓	✓	✓
Mid Semester Examination 1	✓	✓	✓	✓
Mid Semester Examination 2	✓	~	✓	✓

University Examination Image: A state of the										
Feedback Process		1. Student's Fe	edback							
	2. Course Exit Survey									
 Students Feedback is taken through various steps 1. Regular feedback through Mentor Mentee system. 2. Feedback between the semester through google forms. 3. Course Exit Survey will be taken at the end of semester. 										
References:	(List of reference books)									
 i) Christopher, M. Logistics & Supply Chain Management, Prentice Hall Edition, 2016, ISBN:1292083794. ii) John T. Mentzer, J.T. Supply Chain Management, illustrated edition, S. Publications(2001),1*Edition,ISBN: 1412918057 										

			I	Facul	ty of	f Eng	Engineering and Technology										
Name of the	he De	part	ment			Ν	Iecha	nical	Engin	eering	ç						
Name of the	he Pr	ograi	m			В	B. Tech.										
Course Co	ode																
Course Ti	tle					F	inite	Eleme	ent Me	ethods							
Academic	Year	•				I	Ι										
Semester						V	Ί										
Number of	f Cre	dits				3											
Course Pr	erequ	isite				E	ngine	ering l	Math, S	Strengt	h of N	Iateria	ls				
Course Sy Course Ou At the end CO1	e of m ing by	l be a athem 7 appr	owerf nginee eform ructum nalysi robler ne pro- able to natics	ul too ering ation res, au s, flui n. Upo blems o: and en ate and	l for probl and s tomoti d flow on con in soli gineer nume	the nu ems. tress ve cor prob ppletio d mecl ing to rical n	imeric The analys nponer lems, n, stuc nanics solve p nethod	solut appli is of nts, air and el lents s and he problem	ion of cation civil ar craft des lectrical hould b eat transf	nd Mecl signs, he magnet e able to fer using uctural	nge of from hanical eat flux ic flux o solve						
CO2 CO3							e vibration problems with multi-degree freedom system.										
C03							ibration of continuous systems and experimental methods in							in			
Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:																	
COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	3	2	1	2	2	1	1	o 1	2	2	3	3	3	2	2		
CO2	3	2	2	3	1	1	1	1	1	1	2	2	3	2	1		
CO3	3	1	2	2	2	2	2	1	2	1	2	2	3	1	2		
CO4	3	2	1	1	2	1	1	2	3	2	3	3	3	2	1		

Average	3	1.75	1.5	2	1.75	1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5
				l							l				
Course (Cont	ent:													
L (1	Hours	/Week	x)		T (F	Hours/	Week)		P (Hours	Week))	Tota	l Hour/	Week
	3					0				0				3	
Unit			Conte	ent &	c Con	npete	ncies								
1		Def Hist Com Adv Met Ove For Wei Var Intro Eule Fun	inition torical nparis vantag hod o erview mulat ighted iation oduct er-Lag ction	n and l back son w ges an of We of th ion o g fun l resid App ion to grang als an	signi kgrou vith of nd lim bighte f diffe ction dual a roach o the ce equi d var	ifican ind an ther n itatio d Res thod erenti s and approx a for S variat iation	ce of ad dev umerions of iduals of we al equ choic ximat Solvin ion ap and t	the Fi elopn cal m FEM s (C2) ightec ation ation g Diff oproac he pri culus	nite E nent o ethod I resid s usin asic f d erro Ferent ch for nciple	luals g weig unction or estimi ial Eq solvir e of sta	nt Met I olving ghted ons mation uation ng diff ationa	g diffe residu n s (C3) erenti ry acti	al appr) al equa ion		
2		Ove orde Proj fund Sele appl Com Bou Def Typ bou Imp Trea Stre Calo Mat Calo mat	er elen perties ctions ection lication lication sidera inition es of ndary osition atmen ess-Striculation culation culation	of d ments s of f crite ons ations / Con boun f cond boun f cond on of con of const const on of const on of const on of	iffere inite ria fo s for o dition class dary lition bound essent Detern stres itutiv stres stress	ent type eleme or choor eleme ns (C: sificat condi s dary c ial an minati ses ar e moor s and s	ents, s osing ent dis 5) ion o tions, condit id natu ion (C nd stra dels a strain	finite uch as appro tortion f bour inclu ions in ural bo (23) uins in nd the comp	s elem priate n, asp dary ding o n FEN punda finite ir imponen	e elem ect rat condit displac A mod ry con e elem oleme ts bas	ent type io, an ions i cemen lels ndition ent m ntation ed on	size, an pes fo d qual n FEN t, trac ns odels n in FI displa	nd inter r specif lity I tion, an EM cement	ic, high polation ic id mixed t field an	n d

	Formulation and solution of the system of algebraic equations arising from the discretization process Solution algorithms for linear and nonlinear problems Considerations for computational efficiency and accuracy in solution techniques Mesh Refinement (C2) Importance of mesh refinement in FEM analysis Criteria for mesh refinement, such as element size, aspect ratio, and local solution accuracy Techniques for mesh refinement, including uniform and adaptive refinement Impact of mesh refinement, including uniform and adaptive refinement Impact of mesh refinement on solution accuracy and computational cost Convergence Criterion (C3) Definition and significance of convergence in FEM analysis Convergence criteria for assessing the accuracy and stability of solutions Techniques for monitoring convergence during the iterative solution process Strategies for achieving convergence in FEM simulations Frames, Beams, and Axial Elements (C5) Introduction to frame and beam elements in FEM Modeling and analysis of structural components subjected to axial loads Calculation of displacements, stresses, and strains in frame and beam elements Considerations for modeling material and geometric nonlinearities in frame and beam elements Plane Stress and Plane Strain (C4) Definition and characteristics of plane stress and plane strain conditions Modeling and analysis of two-dimensional structures subjected to plane stress or plane strain Calculation of stresses, strains, and displacements in plane stress and plane strain elements Considerations for selecting appropriate element types for plane stress and plane strain problems Shape Function Equations (C4) Introduction to shape functions and their role in FEM analysis Derivation and formulation of shape function equations for different element types Calculation of nodal values and coefficients in shape function equations Application of shape functions in the interpolation of field variables in FEM models
3	Finite Element Formulation for Linear Elastic Continuum (C4) Formulation of the stiffness matrix and load vector for linear elastic materials Constitutive equations for linear elastic behavior and their incorporation into the finite element formulation Derivation and implementation of the governing equations for linear elasticity Considerations for boundary conditions and modeling of geometric nonlinearities in linear elastic FEM analysis Extended Laplace Equation with Inertia and Dissipative Terms (C5) Introduction to the extended Laplace equation with inertia and dissipative terms Formulation of the finite element equations for solving the extended Laplace

	equation Considerations for modeling inertial and dissipative effects in FEM analysis Application of the extended Laplace equation to problems in fluid dynamics, heat transfer, and other fields Plate Bending and 'C' Elements (C4) Formulation and analysis of plate bending problems using finite elements Introduction to plate bending theories, such as Kirchhoff and Reissner-Mindlin theories Implementation of plate bending elements in FEM simulations Considerations for modeling and analyzing plates with different boundary conditions and loading conditions Nonconforming Elements and Patch Test (C3) Introduction to nonconforming finite elements and their applications Formulation and analysis of nonconforming elements in FEM Patch test as a verification technique for assessing the accuracy of nonconforming elements Considerations for using nonconforming elements in FEM analysis and their limitations FEM Analysis of Plates and Shells (C5) Modeling and analysis of plates and shells using finite elements Formulation and implementation of plate and shell elements in FEM simulations Considerations for modeling and analyzing different types of plate and shell structures Calculation of displacements, stresses, and strains in plate and shell elements
4	Dynamic and Nonlinear Problems (C5) Introduction to dynamic and nonlinear analysis in finite element method Formulation and solution techniques for dynamic problems, such as modal analysis and response analysis Considerations for modeling and analyzing nonlinear behavior, including material and geometric nonlinearity Implementation of time integration schemes for solving dynamic problems Material and Geometric Nonlinearity (C5) Modeling and analysis of material and geometric nonlinearity in finite element method Incorporation of nonlinear material behavior, such as plasticity and hyperelasticity, into the analysis Considerations for modeling large deformations and geometric nonlinearities Solution techniques for handling nonlinear problems using iterative procedures Axisymmetric Problems - Classical Solution (C4) Introduction to axisymmetric problems and their classical solutions Formulation and analysis of axisymmetric structures using finite elements Considerations for modeling axisymmetric structures using finite elements Considerations for modeling axisymmetric geometries and boundary conditions Comparison of finite element solutions with classical analytical solutions for axisymmetric problems

Solution techniques for finding natural frequencies and mode shapes
Considerations for modeling and analyzing different types of vibrating
structures
Calculation of natural frequencies and mode shapes using finite element method
Principles of Transient Dynamic Analysis (C4)
Introduction to transient dynamic analysis and its principles
Formulation and implementation of time-dependent loads and boundary
conditions
Solution techniques for solving transient dynamic problems using finite element
method
Analysis of structural response to time-varying loads and dynamic events
Laboratory Work for Solid Mechanics Problems using FE Packages (C3)
Hands-on laboratory exercises using finite element software packages
Solving solid mechanics problems, such as static analysis and vibration analysis,
using FE software
Interpretation and analysis of the results obtained from FE simulations
Practical application of finite element method to real-world engineering
problems
Current Industry Trends (C6)
Exploration of current trends and advancements in the field of solid mechanics
and finite element analysis
Discussion of emerging technologies and methodologies in the industry
Understanding the impact of new developments on the design and analysis of
engineering structures
Exposure to case studies and real-world applications showcasing the latest
industry practices
industry produces

Contact Hours	
30	
5	
5	
5	
45	
	30 5 5 5 5

Teaching	- Learning	Strategies	and Conta	ct Hours
----------	------------	------------	-----------	----------

Assessment Methods:

	Formative		Summative					
Multiple Choi	ce Questions (MC	(Q)	Mid Semester Examination 1					
Viva-voce			Mid Semester	r Exami	nation 2	(Mid Te	rm 3 is	
		optional)						
Assignments		University Er	nd Term	Examin	ation			
Student Semin	nar		Project					
Problem Base	d Learning (PBL)							
Mapping of A	Assessment with	COs	1					
Nature of Ass	sessment			CO1	CO2	CO3	CO4	
Assignment /	Presentation			✓	 ✓ 	 ✓ 	 ✓ 	
Mid Semester	Examination 1			✓	✓	✓	 ✓ 	
Mid Semester	Examination 2			✓	✓	✓	 ✓ 	
University Ex	amination			✓	 ✓ 	✓	 ✓ 	
Feedback Pro	ocess	1. Student's	Feedback			I	I	
		2. Course Ex	xit Survey					
 Regula Feedba 	back is taken thro ar feedback throug ack between the se e Exit Survey will	h Mentor Men emester through	tee system. 1 google forms					
References:	(List of reference		end of semest					
	and T ii) P. Ses	echnology, 1 st Ed	patla (2009), Fin dition, Universit book of Finite E 0-32315-5.	y Press. l	ISBN:978	8-8-173-7	1427-6.	

Faculty of engineering and Technology															
Name of t	the De	part	ment			Ν	Iecha	nical	Engin	eering	5				
Name of t	he Pr	ograi	m			В	B. Tech.								
Course C	ode														
Course Title							ano-7	ſechn	ology	and Su	ırface	Engir	neering		
Academic Year						I	I								
Semester						V	Ί								
Number o	of Cre	dits				3									
Course P	rerequ	isite				N	Iateri	als Er	nginee	ring a	nd Teo	hnolo	gy		
Course Sy Course O	-					an sc E su ir w h b sy b c c c c c	Surface engineering is a sub-discipline of Materials Science and Materials Engineering which deals with the surface of a solid and its modifications. The primary goal of Surface Engineering of nanomaterials is to modify the properties of surface to improve its electrical and thermal properties, and to improve the compatibility of nanomaterials with some matrix when they are used as reinforcing fillers in composites for high performance applications. The course should give a basic introduction to chemical and physical principles in the synthesis of inorganic nanostructured materials. In addition, basic principles of finite size effects will be covered. The course will also cover different methods for synthesis and characterization of different nanostructures and nanostructured bulk materials.						ce of a Surface ties of and to matrix for give a in the Idition, d. The sis and		
At the end	l of the	e cou	rse st	udent	s will	be al	ble to	:							
CO1	Use	of su	rface	engine	eering	and N	Vanon	nateria	ls for	various	s indus	trial aj	pplicatio	ons.	
	To understand the basic concepts of Surface Engineering of Nanomaterials														
CO2	Τοι	unders	stand	the ba	SIC CO	ncepu	s of Si	ırface	Engin	eering	of Na	nomate	erials		
CO2 CO3	Qua	litativ	vely de		e how	the n	anopa		U	U				ystal str	ucture,
	Qua reac	litativ tivity	ely de	escrib electri	e how cal pr	the n operti	anopa es.	rticle	U	n affec	et the n			ystal str	ucture,
CO3	Qua reac Des of Co	litativ tivity cribe	ely do	escrib electri pencap	e how cal pr osulati	the n operti on an	anopa es. d their	rticle	size ca	n affec	et the n	norpho	ology, cr		ucture,
CO3 CO4 Mapping	Qua reac Des of Co	litativ tivity cribe	ely do	escrib electri pencap	e how cal pr osulati	the n operti on an	anopa es. d their	rticle	size ca	n affec	et the n	norpho	ology, cr		PSO3

CO2	3	0	0	0	0	2	0	0	1	0	0	2	1	3	3
CO3	-	-	-										1		
	3	3	3	3	3	2	2	0	0	0	2	3	-	3	3
CO4	3	3	3	3	3	0	0	0	0	0	3	3	-	3	2
Average	3	1.5	2	2	2.25	1	0.5	0	0.25	0	1.25	2.75	0.75	3	2.25
Course (Cont	ent:													
L (Hours/Week)					T (H	lours/	Week)	P (Hours	/Week))	Total	Hour/	Week
	3					0				0				3	
Unit		(Cont	ent 8	c Con	ipete	encies	;							
1		Trił	olog	v & i	its cla	ssific	atior	n (C1)):						
				-					-			and it	s classi	fication	in the
							mater	ials so	cience	. (C1)					
					ogy ((,	.1	c c	•	1	•		$-(\mathbf{C}2)$		
				-	-	-	-					• •	s. (C2) and th	e meth	ods to
				-	duce f				ing n	iction	ai oci	lavioi	and th		ous to
					sion (,							
		Fam	iliari	ty wi	th the	mec	hanis	ms of	wear	and co	orrosio	on. (C2	2)		
						actors	s cont	ributi	ng to	wear a	and co	rrosio	n and th	neir effe	ects on
			erials			nothe	da to	prov	ont on	1 miti	roto w	oor on	d corro	sion (C	1 21
			ricati	-	-	neuro	Jus lo	pieve		1 1111112	gale w			sion. (C	-2)
					,	orinci	ples o	of lub	ricatio	n and	the se	lection	n of lub	ricants.	(C3)
		Kno	wled	ge of	diffe	rent l	ubrica	ation	regime	es and	their	applic	ations.	(C3)	
			-		-			requi	remen	ts and	l selec	t appr	opriate	lubrica	nts for
		-			ation		,	- C			(\mathbf{C}^{2})				
					0.				nomato ogical		. ,	n the	surface	nroner	ties of
					(C3)	-	. 01 .		-Sieur	proce	5505 0	ii uic	surruce	proper	105 01
					` ´		enges	s and	consi	derati	ons f	or trib	ologica	l testir	ng and
									faces.	(C3)					
					surfac			•	,					•	-
						prin	ciple	s and	l tech	nique	s used	i in o	convent	ional s	surface
		-	neeri			surfa	ce m	odific	ation	methr	de an	d thai	r effect	s on m	aterial
			pertie	-	-	surra		Junit	anon	methe	as all			5 011 11	awrar
					ce mo	odific	ation	s (C4):						

	Familiarity with different types of surface modifications, including physical and chemical methods. (C4)
	Understanding the advantages, limitations, and applications of each surface modification technique. (C4)
	Physical modifications (C4):
	Knowledge of physical surface modification techniques such as shot peening, surface grinding, and laser treatment. (C4)
	Understanding the effects of physical modifications on surface properties and material performance. (C4)
	Chemical modifications (C4):
	Understanding chemical surface modification techniques such as surface
	coating, plating, and chemical etching. (C4)
	Knowledge of the principles behind chemical modifications and their effects on material properties. (C4)
	Applications of surface engineering towards nanomaterials (C5):
	Familiarity with the application of surface engineering techniques to enhance
	the performance of nanomaterials. (C5)
	Understanding the unique challenges and considerations when applying surface
	engineering to nanomaterials. (C5)
2	Deposition and surface modification methods (C4):
	Understanding the principles and techniques of deposition for surface
	modification. (C4)
	Familiarity with various deposition methods used, including physical vapor
	deposition (PVD) and chemical vapor deposition (CVD). (C4)
	Physical vapor deposition (PVD) (C4):
	Knowledge of the process and equipment used in physical vapor deposition. (C4)
	Understanding the deposition mechanisms and the formation of thin films
	through PVD. (C4)
	Chemical vapor deposition (CVD) (C4):
	Familiarity with the process and equipment used in chemical vapor deposition.
	(C4)
	Knowledge of the deposition mechanisms and the growth of thin films through
	CVD. (C4)
	Advanced surface modification practices (C5):
	Understanding advanced techniques and practices for surface modification, such
	as ion implantation, plasma treatment, and laser surface engineering. (C5)
	Familiarity with the advantages and limitations of these advanced surface
	modification methods. (C5)

	Advantages of deposition for surface modification (C4):
	Knowledge of the benefits of deposition techniques in surface modification,
	including precise control over film thickness, composition, and microstructure.
	(C4)
	Understanding the improved surface properties achieved through deposition,
	such as enhanced hardness, wear resistance, and corrosion resistance. (C4)
	Synthesis, processing, and characterization of nano-structured coatings (C5):
	Familiarity with the methods of synthesizing nano-structured coatings,
	including bottom-up and top-down approaches. (C5)
	Understanding the processing techniques involved in the deposition of nano-
	structured coatings. (C5)
	Knowledge of the characterization methods used to assess the structure,
	morphology, and properties of nano-structured coatings. (C5)
	Functional coatings (C5):
	Understanding the concept of functional coatings and their applications in
	specific engineering contexts, such as anti-reflective coatings, self-cleaning
	coatings, and bioactive coatings. (C5)
	Knowledge of the materials and techniques used to create functional coatings
	with tailored properties. (C5)
	Advanced coating practices (C5):
	Familiarity with advanced coating methods, such as magnetron sputtering,
	atomic layer deposition (ALD), and electrochemical deposition. (C5)
	Understanding the advantages and limitations of these advanced coating
	practices. (C5)
	Characterization of nano-coatings (C5):
	Knowledge of characterization techniques used to evaluate the properties of
	nano-coatings, including surface roughness measurement, thickness analysis,
	and mechanical testing. (C5)
	Understanding the interpretation of characterization data to assess the
	performance and quality of nano-coatings. (C5)
	Applications of nano-coatings (C5):
	Familiarity with the diverse applications of nano-coatings in various industries,
	such as automotive, aerospace, electronics, and biomedical. (C5)
	Understanding the benefits and specific functional aspects of nano-coatings in
	these applications. (C5)
3	Need of advanced methods for surface and coating testing's (C4):
	Understanding the limitations of traditional testing methods for surface and
	coating evaluation. (C4)
	Recognizing the need for advanced techniques to assess the performance and
	quality of surfaces and coatings. (C4)
L	

Size dependency in nanostructures of nano-coatings (C5):
Understanding the influence of size on the structural characteristics of nano- coatings. (C5)
Recognizing the importance of size control in achieving desired properties and
performance in nano-coatings. (C5)
Size effect in electrochemical properties of nanostructured coatings (C5):
Understanding how the size of nanostructures in coatings affects their
electrochemical behavior and properties. (C5)
Recognizing the size-dependent changes in corrosion resistance, conductivity,
and other electrochemical characteristics of nanostructured coatings. (C5)
Size effect in mechanical properties of nanostructured coatings (C5):
Understanding the impact of size on the mechanical properties of nanostructured coatings, such as hardness, strength, and wear resistance. (C5)
Recognizing the size-dependent changes in mechanical behavior and
performance of nanostructured coatings. (C5)
Size effect in physical and other properties of nanostructured coatings (C5):
Recognizing the influence of size on various physical properties of
nanostructured coatings, including optical, thermal, and magnetic properties.
(C5)
Understanding the size-dependent changes in other functional properties, such
as surface energy, adhesion, and catalytic activity, in nanostructured coatings.
(C5)
Thin films for surface engineering of nanomaterials (C5):
Understanding the use of thin films as a surface engineering technique for nanomaterials. (C5)
Familiarity with the advantages and applications of thin films in modifying the
surface properties of nanomaterials. (C5)
Sputtering techniques (C4):
Knowledge of the sputtering process and its variants, such as magnetron
sputtering and reactive sputtering. (C4)
Understanding the principles and parameters involved in sputtering thin film
deposition. (C4)
Evaporation processes (C4):
Familiarity with the evaporation techniques used for thin film deposition,
including thermal evaporation and electron beam evaporation. (C4)
Knowledge of the process parameters and considerations for successful
evaporation-based thin film deposition. (C4)
Thin film deposition through gas phase techniques (C4):
Understanding the gas phase deposition methods, such as chemical vapor
deposition (CVD) and physical vapor deposition (PVD), used for thin film
ucposition (CVD) and physical vapor deposition (FVD), used for thin him

	fabrication. (C4)
	Familiarity with the process principles and equipment involved in gas phase thin
	film deposition. (C4)
	Liquid phase techniques (C4):
	Knowledge of the liquid phase techniques employed for thin film deposition,
	such as dip coating, spin coating, and sol-gel processing. (C4)
	Understanding the advantages, limitations, and specific applications of liquid
	phase methods in thin film fabrication. (C4)
4	Processes, Microencapsulation: Kinetics of release (C4):
	Understanding the principles and mechanisms governing the release kinetics of
	microencapsulated materials. (C4)
	Familiarity with the factors influencing the rate and duration of release from
	microcapsules. (C4)
	Plating of nanocomposite coatings (C4):
	Knowledge of the plating techniques used to deposit nanocomposite coatings.
	(C4)
	Understanding the advantages and challenges associated with plating
	nanocomposite coatings. (C4)
	Advantages of microencapsulation over other conventional methods (C4):
	Recognizing the benefits of microencapsulation as a surface modification
	technique compared to other traditional methods. (C4)
	Understanding the enhanced stability, controlled release, and protection
	provided by microencapsulation. (C4)
	Current trends in surface modification of nanomaterials (C5):
	Keeping up-to-date with the latest advancements and emerging techniques in
	surface modification of nanomaterials. (C5)
	Familiarity with recent research and developments in the field of nanomaterial
	surface modification. (C5)
	Modified Nanomaterials: In-use for consumer products (C5):
	Recognizing the widespread application of modified nanomaterials in consumer
	products across various industries. (C5)
	Understanding the benefits and functionalities provided by modified
	nanomaterials in consumer goods. (C5)
	Main problems in synthesis of modified nanomaterials (C4):
	Identifying the common challenges and issues encountered during the synthesis
	of modified nanomaterials. (C4)
	Understanding the factors affecting the successful synthesis of modified
	nanomaterials, such as scalability, reproducibility, and stability. (C4)
Taaabina Las	arning Strategies and Contact Hours

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
--------------------------------	---------------

Lecture	26
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	2
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4			
Assignment / Presentation		✓	✓	✓	✓		
Mid Semester Examination 1		✓	✓	 ✓ 	✓		
Mid Semester Examination 2		✓	✓	✓	✓		
University Examination	✓	 ✓ 	 ✓ 	✓			

Feedback Process

1. Student's Feedback

2. Course Exit Survey

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

i) Bharat Bhusan, Introduction to Tribology, John Wiley & Sons, USA.ISBN: 978-111994453,2013,
ii) Mahmood Aliofkhazrae, Nanocoatings: Size Effect in Nanostructured Films, Springer-Verlag, USA.2021,ISBN: 978-0444632371

Faculty of	f Engineering and Technology
Name of the Department	Mechanical Engineering
Name of the Program	B. Tech.
Course Code	
Course Title	SEC-IV (Digital Manufacturing)
Academic Year	III
Semester	VI
Number of Credits	2
Course Prerequisite	Manufacturing Processes and Technology
Course Synopsis	This course introduces students to the concepts and tools of digital manufacturing, focusing on the integration of digital technologies in modern manufacturing processes. Students will learn about computer-aided design (CAD), computer-aided manufacturing (CAM), and additive manufacturing techniques. The course emphasizes hands-on experience with digital manufacturing software and equipment.
Course Outcomes:	software and equipment.

At the end of the course, students will be able to:

CO1	Understand the principles and applications of digital manufacturing technologies.
CO2	Apply computer-aided design (CAD) software to create 3D models for manufacturing.
CO3	Utilize computer-aided manufacturing (CAM) software to generate tool paths for machining processes.
CO4	Implement additive manufacturing techniques and evaluate their advantages and limitations.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO	РО	РО	PO	РО	РО	PO	РО	РО	РО	РО	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	2	2	3	1	1	1	-	1	1	1	3	2	1
CO2	3	3	3	2	3	1	1	-	-	1	1	1	3	3	1
CO3	3	3	3	2	3	-	-	-	-	-	1	1	3	3	-
CO4	3	3	3	3	3	-	-	-	-	-	1	1	3	3	-

Average	3	2.75	2.75	2.25	3	0.5	0.5	0.25	-	0.5	1	1	3	2.75	0.5	
	1	1						l			l					
Course (Cont	ent:														
L (1	L (Hours/Week)					Iours/	Week)	P (Hours/	Week)		Tota	l Hour/	Hour/Week	
0						0			4 4							
Sr. No.	Sr. No. Content & C				mpe	tenci	es									
1		Ove Ren Dig	erview nemb italiza	v of di ering) ation a	igital and I	manı ndust	ufactu ry 4.0	ring o (C2:	concep Unde	rstand	l techi ing)	-	es (C1:			
2		Trends and applications of digital manufacturing (C2: Understanding)Computer-Aided Design (CAD) for Manufacturing (8 hours)Introduction to CAD software for manufacturing (C2: Understanding)3D modeling techniques and best practices (C3: Applying)Design for manufacturing (C2: Applying)														
3		Design for manufacturability considerations (C3: Applying)Computer-Aided Manufacturing (CAM) Basics (8 hours)CAM software overview and functionality (C2: Understanding)Toolpath generation for milling, turning, and drilling operations (C3: Applying)Simulation and verification of machining processes (C3: Applying)							lying)							
4		CNC Machining and Tooling (8 hours) CNC machine tools and their components (C2: Understanding) Tooling selection and considerations (C3: Applying)														
5		Machining operations and strategies (C3: Applying)Additive Manufacturing (8 hours)Introduction to additive manufacturing techniques (C2: Understanding)Types of 3D printers and their working principles (C2: Understanding)Design considerations for additive manufacturing (C3: Applying)														
6		Design considerations for additive manufacturing (C3: Applying)Simulation and Optimization in Digital Manufacturing (6 hours)Process simulation and optimization tools (C2: Understanding)Virtual prototyping and digital twin concepts (C4: Analyzing)Process parameter optimization (C3: Applying)														
7		Process parameter optimization (C3: Apprying)Quality Control and Inspection in Digital Manufacturing (6 hours)Metrology and inspection techniques in digital manufacturing (C2:Understanding)Geometric dimensioning and tolerancing (C3: Applying)Statistical process control (SPC) in manufacturing (C3: Applying)														
8		Dig Rea Cas Inte	ital M 1-wor e stud	lanufa ld app lies ar on of o	acturi plicat nd ind ligita	ing A ions dustry	pplica of dig / exar	ations jital m nples	and C anufa (C2: 1	Case St cturin Unders	tudies g (C4: standi	(8 ho Anal ng)		C2:		

9	Project Work (10 hours)
	Hands-on project involving digital manufacturing processes (C5: Creating)
	Design and fabrication of a prototype using digital manufacturing techniques
	(C3: Applying)
	Documentation and presentation of the project (C3: Applying)

Teaching-Learning Strategies	Contact Hours	
Lecture		
Practical	15	
Seminar/Journal Club		
Small Group Discussion (SGD)	5	
Self-Directed Learning (SDL) / Tutorial	10	
Problem Based Learning (PBL)	15	
Case/Project Based Learning (CBL)	10	
Revision	5	
Others If any:		
Total Number of Contact Hours	60	

Assessment Methods:

Formative	Summative
Viva-voce	Practical Examination & Viva-voce
Problem Based Learning (PBL)	University Examination
Assignment	

 ✓ 	~	✓
•	✓	✓
 ✓ 	 ✓ 	✓
✓	 ✓ 	✓
	✓	✓ ✓

Feedback Proces	s 1. Student's Feedback
	2. Course Exit Survey
Students Feedbac	k is taken through various steps
1. Regular fe	edback through the Mentor Mentee system.
2. Feedback	between the semester through google forms.
3. Course Ex	it Survey will be taken at the end of the semester.
References:	(List of reference books)
	1. "Additive Manufacturing Technologies: 3D Printing, Rapid
	Prototyping, and Direct Digital Manufacturing" by Ian Gibson,
	David W. Rosen, and Brent Stucker, Springer Nature, Edition
	Year: 2015, ISBN: 978-1493921126
	2. "Digital Manufacturing: The Industrialization of "Art to Part" 3D
	Additive Printing", Chandrakant Patel, Chun-Hsien Chen, Elsevier
	ISBN: 9780323950633
	3. "Practical Guide to Digital Manufacturing: First-Time-Right for
	Design of Products, Machines, Processes and System Integration",
	Springer Nature, 2021, ISBN: 978-3-030-70303-5

Facult	y of Engineering and Technology
Name of the Department	Mechanical Engineering
Name of the Program	B. Tech.
Course Code	
Course Title	Robot Operating and Control Systems
Academic Year	III
Semester	VI
Number of Credits	3
Course Prerequisite	Robotics Engineering & Applications
Course Synopsis	The main aim of this course is to introduce the Robot Operating and control system. This course gives a brief understanding of the UNIX, architecture of operating system, computation graph level, debugging and Visualization. To give a practical exposure various case studies will be introduced.

Outcomes:

At the end of the course students will be able to:

CO1	Describe the need for ROS and its significance. Summarize the Linux commands used in robotics.
CO2	Discuss about the concepts behind navigation through file system.
CO3	Explain the concepts of Node debugging
CO4	Analyze the issues in hardware interfacing and discuss about the applications of ROS

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific **Outcomes:**

COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	РО 11	PO 12	PSO1	PSO2	PSO3
CO1	3	0	1	1	3	2	3	1	2	2	1	1	2	3	1
CO2	3	2	2	1	3	0	2	0	0	0	1	3	1	3	3
CO3	3	2	3	2	3	1	2	1	0	0	0	2	-	3	3
CO4	3	2	1	0	2	0	1	0	1	1	1	2	-	3	2
Average	3.0	1.5	1.8	1.0	2.8	0.8	2.0	0.5	0.8	0.8	0.8	2.0	0.75	3	2.25

L (I	Hours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Wee		
	3	0	0	3		
Unit	Content	& Competencies				
1	IntroductionUnderstandirSystem) equFamiliarity vmeta-operatiDistributionsIdentifying tUnderstandirother meta-orServices - ReKnowledgerobotic systerUnderstandirOperating syFamiliarityapplicationsKeeping up-their new featUNIX commProficiencymanipulationUnderstandirbased systemFile system sKnowledgechanging accUnderstandirbased systemFile system sKnowledgechanging accUnderstandirof data proteProficiencysuch as compFamiliarity	-The ROS Equation ng the basic concept ation. (C2) with the historical back ng system in robotics s - difference from oth he various distribution ng the distinguishing perating systems in the OS framework (C2): of the services provems. (C2) ng the architecture and stem - releases (C2): with the role of the (C2) to-date with the difference of the tures and improvement ands - file system - re- in using UNIX con- n. (C2) mg the concept and usings. (C2) security - Changing and of file system secu- cess rights and permissing the importance of ction and system inter mands - compiling, bi- in executing processing piling, building, and re- with the command-1 t and execution. (C2)	and significance of the ekground and evolution . (C2) her meta-operating systems and versions of ROS features and advantage he context of robotics. (C ided by ROS for deve d components of the RC ROS as an operating erent releases and updated ents. (C2) edirection of input and output commands for file systems sage of input and output ccess rights (C3): with mechanisms and esions. (C3) maintaining secure file	of ROS as a prominen ems (C3): available. (C3) s of ROS compared to C3) loping and controlling OS framework. (C2) system for robotics ates of ROS, including output (C2): tem management and at redirection in UNIX techniques, including systems in the contex mmands (C2): [X-based environment]		

	Understanding the concept of variables in programming and their role in storing and manipulating data. (C2)
	Proficiency in handling variables within the UNIX command-line environment. (C2)
2	File system - packages - stacks - messages - services - catkin workspace - working with catkin workspace - working with ROS navigation and listing commands (C2):
	Understanding the organization of files and directories in the ROS file system. Familiarity with creating and managing packages and stacks in ROS.
	Knowledge of ROS messages and services and their role in communication between nodes.
	Proficiency in working with the catkin workspace for building and managing ROS packages.
	Ability to navigate and use ROS navigation and listing commands for exploring the file system and managing ROS components.
	Navigation through file system - Understanding of Nodes - topics - services - messages - bags - master - parameter server (C3):
	Proficiency in navigating through the ROS file system to locate and manage files and directories.
	Understanding the concept of nodes in ROS and their role in distributed computation.
	Knowledge of topics, services, and messages as communication mechanisms between nodes.
	Familiarity with ROS bags and their usage for recording and playing back data. Understanding the role of the ROS master in managing communication between nodes.
	Knowledge of the parameter server and its usage for storing and accessing configuration parameters in ROS.
3	Debugging of Nodes - topics - services - messages - bags - master - parameter - visualization using Gazebo - Rviz - URDF modeling - Xacro - launch files (C4):
	Proficiency in debugging nodes in ROS, including troubleshooting issues related to topics, services, messages, bags, the ROS master, and parameter settings.
	Ability to visualize and simulate robot models and environments using Gazebo and Rviz.
	Understanding and proficiency in creating and modifying URDF models using Xacro for robot description in ROS.
	Knowledge of launch files and their usage for managing multiple nodes and configurations in ROS.

	Hardware Interface: Sensor Interfacing - Sensor Drivers for ROS - Actuator Interfacing - Motor Drivers for ROS (C5):
	Proficiency in interfacing sensors with ROS, including writing sensor drivers to enable data acquisition and processing.
	Ability to interface actuators, such as motors, with ROS using motor drivers to control their movement and behavior.
	Understanding of hardware integration with ROS and the concepts of sensor- actuator communication in robotic systems.
4	Navigation stack - creating transforms - odometer - IMU - laser scan - base controller - robot configuration - cost map - base local planner - global planner - localization - sending goals - TurtleBot - the low-cost mobile robot (C4):
	Proficiency in setting up and configuring the navigation stack in ROS, which includes creating transforms to establish the coordinate systems between various sensors and the robot.
	Knowledge and utilization of odometry and IMU data for robot localization and pose estimation.
	Understanding and implementation of laser scan data processing for environment perception and obstacle avoidance.
	Ability to configure the base controller to control the motion of the robot, including velocity and trajectory planning.
	Familiarity with robot configuration files and their customization for specific robot models, such as the TurtleBot.
	Proficiency in building and utilizing cost maps for path planning and obstacle avoidance in navigation.
	Understanding and configuration of the base local planner, which determines the local trajectory of the robot based on sensor inputs and global planning.
	Knowledge and utilization of global planners to generate high-level paths for the robot to navigate towards predefined goals.
	Understanding and implementation of localization techniques, such as AMCL
	(Adaptive Monte Carlo Localization), for accurate position estimation of the robot.
	Ability to send goals to the navigation stack and monitor the robot's progress towards reaching those goals.

Teaching - Learning Strategies	Contact Hours
Lecture	26

Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	2
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4	
Assignment / Presentation	✓	✓	✓	1	
Mid Semester Examination 1	✓	✓	✓	~	
Mid Semester Examination 2	 ✓ 	✓	✓	~	
University Examination	✓	✓	✓	~	
Feedback Process	Feedback		1		
	2. Course Exit Survey				
Students Feedback is taken through variou	s stons				

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

i) Jason M O'Kane, "A Gentle Introduction to ROS", CreateSpace, 2013.

ii) AnisKoubaa, "Robot Operating System (ROS) – The Complete Reference (Vol.3), Springer, 2018.
iii) Kumar Bipin, "Robot Operating System Cookbook", Packt Publishing, 2018.

iv) Wyatt Newman, "A Systematic Approach to learning Robot Programming with ROS", CRC Press, 2017.

v) Patrick Gabriel, "ROS by Example: A do it yourself guide to Robot Operating System", Lulu, 2012

echanical Engineering Tech. bot Operating and Control Systems Lab
bot Operating and Control Systems Lab
botics Engineering & Applications
e main aim of this course is to introduce the Robot erating and Control system. This course gives a brief derstanding of the UNIX, architecture of operating system, nputation graph level, debugging and Visualization. To e a practical exposure various case studies will be roduced.
e to:

CO1	Describe the need for ROS and its significance. Summarize the Linux commands used in
	robotics.
CO2	Discuss about the concepts behind navigation through file system.
CO3	Explain the concepts of Node debugging
CO4	Analyze the issues in hardware interfacing and discuss about the applications of ROS

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	2	1	2	1	-	-	-	1	-	2	3	3	2
CO2	3	2	2	2	2	1	-	-	-	1	-	3	3	3	2
CO3	3	2	2	2	2	1	-	-	-	1	-	3	3	3	3
CO4	3	2	2	2	2	1	-	-	-	1	-	3	2	2	1
Average	3	2	2	1.75	2	1	-	-	-	1	-	2.75	2.75	2.75	2

L (Hours/Week)		T (Hours/Week)	P (Hours/Week)	Total Hour/Week			
0		0	2	2			
Sr. No.	Conten	t & Competencies					
1	To study var	rious ROS and their sig	nificance. C1, C2				
2	To study and	To study and understand the UNIX Commands used in Robotics C1, C2					
3	To study the	To study the Navigation through file system. C1, C2					
4	To study the	Debugging of Nodes.	C1, C2				
5	To study the	visualization using Ga	zebo. C1, C2				
6	To study the	Hardware Interface of	Robots. C1, C2				
7	To study the	e Sensor Interfacing and	l Sensor Drivers for ROS.	C1, C2			
8	To study the	Actuator Interfacing a	nd Motor Drivers for ROS.	C1, C2			

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	15
Seminar/Journal Club	
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	10
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	30

Formative	Summative
Multiple Choice Questions (MCQ)	VIVA
Viva-voce	Practical Examination & Viva-voce

 University Examination

Nature of Assessment	CO1	CO2	CO3	CO4			
VIVA	✓	✓	✓	✓			
Practical Log Book/ Record Book	✓	 ✓ 	✓	✓			
University Examination	✓	 ✓ 	 ✓ 	✓			
Feedback Process	1. Stu	1. Student's Feedback					
	2. Co	2. Course Exit Survey					

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

- i) Jason M O'Kane, "A Gentle Introduction to ROS", Create Space, 2013.
- ii) Anis Koubaa, "Robot Operating System (ROS) The Complete Reference (Vol.3), Springer, 2018.
- iii) Kumar Bipin, "Robot Operating System Cookbook", Packt Publishing, 2018.
- iv) Wyatt Newman, "A Systematic Approach to learning Robot Programming with ROS", CRC Press, 2017.
- v) Patrick Gabriel, "ROS by Example: A do it yourself guide to Robot Operating System", Lulu, 2012

			I	Facul	lty of	f Eng	ginee	ering	and 7	Fechr	olog	у			
Name of t	he De	epart	ment			N	Iecha	nical	Engin	eering	5				
Name of t	he Pr	ogra	m			E	B. Tec	h.							
Course Co	Course Code														
Course Title						E	V Ch	argin	g Infra	astruct	ure To	echno	logy		
Academic Year Semester Number of Credits Course Prerequisite					Ι	II									
					V	Ί									
					3										
					I	ntrodu	uction	to El	ectric	and H	ybrid	Vehicle	e		
Course Synopsis						p a u	This subject deals with explaining various technical parameters of an EV charging infrastructural network. It also distinguishes between various types of batteries used for EV applications and to develop battery charger for an EV.								
Course O	utcon	nes:													
At the end	of the	e cou	rse, st	uden	ts wil	l be a	ble to):							
CO1	Elal	oorate	vario	us tec	hnical	l para	meters	s of ba	tteries						
CO2	Dis	tingu	ish be	etwee	n vari	ious t	ypes	of bat	teries	used f	for EV	appli	ications	•	
CO3	Dev	velop	batte	ry ch	arger	for a	n EV								
CO4	Dev	elop a	and D	esign	the Cl	nargir	ıg Infr	astruc	ture.						
Mapping Outcomes	:					-							gram S	pecific	
COs	PO 1	PO 2	PO 3	РО 4	РО 5	РО 6	РО 7	РО 8	PO 9	PO 10	PO1 1	PO 12	PSO1	PSO2	PSO3
CO1	3	-	1	1	3	2	3	1	2	2	1	1	3	2	-
CO2	3	2	2	1	3	-	2	-	-	-	1	3	3	2	-
CO3	3	2	3	2	3	1	2	1	-	-	-	2	3	1	1
CO4	3	2	1	-	2	-	1	-	1	1	1	2	3	2	1
Average	3.0 1.5 1.8 1.0 2.8 0.8 2.0 0.5 0.8 0.8									0.8	2.0	3	1.75	0.5	
Course (Cont	ent:													
L (1	Hours	/Week	x)		T (E	Iours/	Week)	P (Hours	Week)		Total	Hour/	Week

3		0	0	3					
Unit	Content	& Competencies							
1	Cell and battery voltages (C1): Understand the concept of cell voltage, which is the electrical potential difference between the positive and negative terminals of a single cell (C1) Learn about battery voltage, which is the combined voltage of multiple cells connected in series (C1) Charge (or Amphour) capacity (C1): Understand the concept of charge capacity or amp-hour (Ah) capacity, which represents the total amount of electrical charge a battery can store (C1) Learn how charge capacity is measured and specified for different types of								
	Understand t which is com Learn how to = Voltage x (Energy densi Understand t stored per un Learn how di can affect the Specific pow Understand t battery can d Learn how sp reactions wit Amphour (or Understand t	batteries (C1) Energy stored (C1): Understand that batteries store electrical energy in the form of chemical energy, which is converted to electrical energy during discharge (C1) Learn how to calculate the energy stored in a battery using the equation: Energy = Voltage x Charge Capacity (C1) Energy density (C1): Understand the concept of energy density, which refers to the amount of energy stored per unit volume or mass of the battery (C1) Learn how different battery chemistries have varying energy densities, which can affect their application and performance (C1) Specific power (C1): Understand the concept of specific power, which refers to the rate at which a battery can deliver electrical power per unit mass or volume (C1) Learn how specific power is influenced by the internal resistance and chemical reactions within the battery (C1):							
	battery's capa Learn how fa in charging a Energy effici Understand t energy output Learn how fa process, and Self-discharg Understand t of charge over Learn about chemistry, te Battery geom	acity (C1) actors such as interna- and discharging proce- lency (C1): he concept of energy at of the battery to the actors such as heat di self-discharge can in- ge rates (C1): hat batteries can und er time without any e- the factors that affec mperature, and stora hetry (C1):	t self-discharge rates, such	e, and inefficiencies efficiency (C1) es the ratio of the ging (C1) rging/discharging 1) is the gradual loss as battery					

	can impact factors such as capacity, energy density, and internal resistance (C1) Learn about common battery geometries, including cylindrical, prismatic, and pouch cells (C1) Battery temperature, heating, and cooling needs (C1): Understand that temperature has a significant impact on battery performance, including capacity, power output, and lifespan (C1) Learn about the ideal temperature range for battery operation and the need for thermal management systems to control temperature (C1) Battery life and number of deep cycles (C1): Understand that battery life refers to the expected lifespan of a battery, typically measured in cycles or years (C1) Learn that deep cycles, which involve discharging the battery to a low state of charge, can affect battery life and the number of cycles a battery can endure (C1)
2	Battery Chargers: Charge equalization (C3): Proficiency in understanding and implementing charge equalization techniques in battery charging systems. This involves balancing the charge levels of individual cells within a battery pack to ensure optimal performance and longevity. Conductive chargers - Basic charger circuits (C3): Proficiency in designing and analyzing basic charger circuits for conductive battery charging. This includes the understanding of charging algorithms, voltage and current regulation, and safety features. Microprocessor-based charger circuit (C4): Proficiency in designing and implementing charger circuits that utilize microprocessors or microcontrollers for advanced charging control and monitoring. This involves programming and integrating various functionalities such as charge termination, temperature monitoring, and communication interfaces. Arrangement of an off-board conductive charger (C2): Familiarity with the setup and configuration of off-board conductive chargers, which are designed to charge batteries outside of the device or system they are used in. This includes the understanding of connectors, cables, and safety considerations. Standard power levels of conductive chargers (C2): Understanding the different power levels and charging standards associated with conductive chargers. This includes knowledge of charging rates, voltage levels, and compatibility with different battery chemistries and applications. Inductive chargers - Principle of inductive charging (C3): Proficiency in understanding the principles of inductive charging, which
	involves transferring energy wirelessly through electromagnetic fields between

	a charging pad or base station and the battery. This includes knowledge of magnetic coupling, resonant circuits, and power transfer efficiency. Soft-switching power converter for inductive charging (C4):
	Proficiency in designing and implementing soft-switching power converters
	specifically for inductive charging applications. This involves the use of
	advanced switching techniques to reduce power losses and improve overall
	efficiency.
	Battery indication methods (C2):
	Familiarity with different methods used to indicate the state of charge or battery status. This includes visual indicators (LEDs), digital displays, or
	communication interfaces that provide information about the battery's charge
	level, voltage, or remaining capacity
3	Lead Acid Batteries:
	Lead acid battery basics (C2): Understanding the fundamental principles and
	construction of lead acid batteries, including the electrochemical reactions and
	components involved.
	Special characteristics of lead acid batteries (C2): Familiarity with the unique
	characteristics of lead acid batteries, such as their ability to deliver high
	currents, tolerance to overcharging, and low self-discharge rates.
	Battery life and maintenance (C2): Understanding the factors that affect the
	lifespan of lead acid batteries and the maintenance practices required to
	maximize their performance and longevity.
	Battery charging (C3): Proficiency in the principles and techniques of charging
	lead acid batteries, including proper voltage and current regulation, charge
	termination methods, and considerations for different charging rates.
	Nickel-based Batteries:
	Introduction to Nickel-based Batteries (C2): Understanding the basics of nickel-
	based batteries, including their composition, working principles, and common
	applications.
	Nickel Cadmium (C2): Familiarity with the specific characteristics, advantages,
	and limitations of nickel-cadmium (NiCd) batteries, including their energy
	density, memory effect, and environmental considerations.
	Nickel Metal Hydride Batteries (C2): Understanding the features, advantages,
	and limitations of nickel-metal hydride (NiMH) batteries, including their higher
	energy density, lack of memory effect, and applications in various devices.
	Sodium-based Batteries:
	Introduction to Sodium-based Batteries (C2): Understanding the basics of
	sodium-based batteries, including their composition, working principles, and
	potential applications.
	Sodium Sulphur Batteries (C2): Familiarity with the characteristics and

	considerations of sodium-sulphur (NaS) batteries, including their high energy
	density, operating temperature requirements, and applications in grid-level
	energy storage.
	Sodium Metal Chloride (Zebra) Batteries (C2): Understanding the features and
	advantages of sodium metal chloride (Zebra) batteries, including their high
	operating temperature, long cycle life, and suitability for renewable energy
	storage.
	Lithium Batteries:
	Introduction to Lithium Batteries (C2): Understanding the basics of lithium
	batteries, including their composition, working principles, and widespread use
	in various applications.
	The Lithium Polymer Battery (C2): Familiarity with the characteristics and
	considerations of lithium polymer batteries, including their flexible form factor,
	high energy density, and applications in portable electronic devices.
	The Lithium-ion Battery (C2): Understanding the features, advantages, and
	limitations of lithium-ion (Li-ion) batteries, including their high energy density,
	low self-discharge rate, and applications in electric vehicles, laptops, and
	smartphones.
	Metal Air Batteries:
	Introduction to Metal Air Batteries (C2): Understanding the basics of metal air
	batteries, including their composition, working principles, and potential
	advantages in terms of energy density and cost-effectiveness.
	The Aluminum Air Battery (C2): Familiarity with the characteristics and
	considerations of aluminum-air batteries, including their high theoretical energy
	density, challenges associated with electrolyte management, and potential
	applications in electric vehicles.
	The Zinc Air Battery (C2): Understanding the features and advantages of zinc-air
	batteries, including their high energy density, long shelf life, and applications in
	hearing aids and other small electronic devices.
4	Domestic Charging Infrastructure (C1):
	Understanding the concept of domestic charging infrastructure for electric
	vehicles (EVs) and its role in enabling convenient and accessible charging at
	residential locations.
	Public Charging Infrastructure (C1):
	Understanding the concept of public charging infrastructure for EVs and its
	significance in providing charging facilities in public spaces, such as parking
	lots, shopping centers, and roadside stations.
	Normal Charging Station (C1):
	Familiarity with normal charging stations that provide standard charging power

Understanding occasional charging stations, which are designed for intermittent or occasional use, such as at workplaces, recreational areas, or other locations
where EV users may spend longer periods.
Fast Charging Station (C2):
Proficiency in the concept of fast charging stations that provide higher charging
power levels, enabling quicker charging times for EVs. Knowledge of direct
current (DC) fast chargers and their compatibility with different EV models.
Battery Swapping Station (C2):
Understanding battery swapping stations, where the depleted battery of an EV
can be exchanged for a fully charged one, enabling rapid turnaround times and
extending the driving range of EVs.
Move-and-charge Zone (C1):
Familiarity with move-and-charge zones, which incorporate wireless charging
technologies or conductive charging systems embedded in the road or parking
surfaces. Understanding their potential to provide continuous charging while
driving or parking.

Teaching - Learning	Strategies and	Contact Hours
----------------------------	----------------	----------------------

Teaching - Learning Strategies	Contact Hours	
Lecture	30	
Practical		
Seminar/Journal Club	2	
Small Group Discussion (SGD)	4	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision	4	
Others If any:		
Total Number of Contact Hours	45	

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1

Viva-voce	Mid Semester Examination 2 (Mid Term 3 is
	optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessm	nent			CO1	CO2	CO3	CO4			
Assignment / Prese	entation			✓	✓	 ✓ 	✓			
Mid Semester Exa	✓	✓	✓	 ✓ 						
Mid Semester Exa	ter Examination 2					 ✓ 				
University Examin	ation									
				. 11 1						
Feedback Process	5		1. Student's F	eedback						
			2. Course Exit Survey							
Students Feedback	is taken thro	ugh various	steps							
1. Regular fee	dback throug	h Mentor M	lentee system.							
2. Feedback b	etween the se	mester throu	ugh google form	ns.						
3. Course Exi	t Survey will	be taken at t	the end of semes	ster.						
References:	(List of refe	rence books)							
	 Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamenta CRC Press, 2003. 									
	 C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001. 									
	 Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004. 									
		es Larminie, J y, 2003.	ohn Lowry, Elect	tric Vehic	le Techno	logy Exp	lained,			

			-	Facu	lty o	of En	gine	ering	g and	Tec	hnolog	gy			
Name of t	he De	epart	ment			Ν	/lecha	inical	Engi	neerii	ng				
Name of t	he Pr	ogra	m			В	B. Tech.								
Course Code															
Course Title						E	EV Ch	argin	g Inf	rastru	cture To	echno	logy La	b	
Academic Year						Π	Π								
Semester					V	/I									
Number of Credits					1										
Course Prerequisite					Iı	ntrodu	uctior	n to E	lectri	c and H	ybrid	Vehicle			
Course Synopsis						p a fo	This subject deals with explaining various technical parameters of an EV charging infrastructural network. It also distinguishes between various types of batteries used for EV applications and to develop battery charger for an EV.								
Course O	utcon	nes:													
At the end	of the	e cou	rse sti	udent	s will	be a	ble to	:							
CO1	Elal	borate	vario	us tec	hnical	l para	meters	s of ba	atterie	s.					
CO2	Dis	tingu	ish be	etwee	n vari	ious t	ypes	of ba	tteries	s usec	l for EV	' appli	ications.		
CO3	Dev	velop	batte	ry ch	arger	for a	n EV								
CO4	Dev	elop a	and D	esign	the Cl	hargin	ıg Infr	astruc	cture.						
Mapping Outcomes COs		PO	Outc	omes	(CO PO	s) to PO	Prog PO	ram (Outco PO	omes	(POs)&	& Pro	gram Sj	pecific PSO2	PSO3
COS	1	2	3	4	5	6	7	8	9	10	1011	12	1501	1502	1505
CO1	3	-	1	1	3	2	3	1	2	2	1	1	3	2	-
CO2	3	2	2	1	3	-	2	-	-	-	1	3	3	2	-
CO3	3	2	3	2	3	1	2	1	-	-	-	2	3	1	1
CO4	3	2	1	-	2	-	1	-	1	1	1	2	3	2	1
Average	3.0	1.5	1.8	1.0	2.8	0.8	2.0	0.5	0.8	0.8	0.8	2.0	3	1.75	0.5
	<u> </u>	1	1				I	1	I	1	1		1	1	<u> </u>
Course	Cont	ent:													

L (Hours/Week)		T (Hours/Week)	P (Hours/Week)	Total Hour/Week		
0		0	2	2		
Sr. No.	Conter	nt & Competencies		I		
1		bout different chargin ging systems. (C1, C2	g systems: Constant volt	age, Constant current &		
2	• 1	rinciple and analyze plick chargers. (C1, C2	performance of AC and D	OC chargers, Semi-fast,		
3	To study a	To study about different types of Batteries used in EV's. (C1,C2)				
4	Analysis o	Analysis of Dynamic wireless charger. (C1, C2)				
5	•	charger standard inc	ds including Qi, PMA, A luding CHAdeMO, SAE			
6			y about load managemer	nt. (C1, C2)		
7	To study a	To study about battery swapping technology. (C1, C2)				
8	Compariso C2)	Comparison of EV technology with Hydrogen and solid fuel technologies. (C1, C2)				

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	15	
Seminar/Journal Club		
Small Group Discussion (SGD)	5	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	10	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	30	

Formative	Summative
Multiple Choice Questions (MCQ)	VIVA

Viva-voce	Practical Examination & Viva-voce
	University Examination

Nature of Assessment	CO1	CO2	CO3	CO4			
VIVA	✓	 ✓ 	✓	✓			
Practical Log Book/ Record Book	✓	✓	✓	✓			
University Examination	✓	✓	 ✓ 	✓			
Feedback Process	1. St	1. Student's Feedback					
	2. Co	ourse Exit	Survey				
Students Feedback is taken through var	ious steps						
1. Regular feedback through Ment	-	vstem.					
2. Feedback between the semester	through goo	gle forms.					
3. Course Exit Survey will be take	n at the end	of semeste	er.				

References:

- i) Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
- C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001.
- iii) Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
- iv) James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

FACULTY	OF ENGINEERING AND TECHNOLOGY
Name of the Department	Computer Science Engineering
Name of the Program	Bachelor of Technology
Course Code	
Course Title	Data Visualization
Academic Year	III
Semester	VI
Number of Credits	3
Course Prerequisite	NIL
Course Synopsis	To enable students with a basic understanding of recent advancements in Big Data and using insights, statistical models, visualization techniques for its effective application in Business intelligence. The course covers topics like: Big Data Technology Landscape, Business implementation of Big data, Hive (ETL), Pig, sparkR, Hadoop, framework for big data analysis, OLTP vs OLAP, Tableau.
Course Outcomes: At the end of the course students will b	be able to:
* *	g of the key technologies in data science and business analytics: loading (ETL) using Hive and Pig, machine learning, predictive chniques.
CO2 Work with Big Data framewo	rk: Hadoop (HDFS and MapReduce), Hadoop Ecosystem & spark.
CO3 Employ cutting edge tools and	technologies to analyze Big Data.
CO4 Understanding the concept of a	analysis of big data.
Mapping of Course Outcomes (COs)	to Program Outcomes (POs) & Program Specific Outcomes:

FACULTY OF ENGINEERING AND TECHNOLOGY

Cos	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	Р	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	S	04	
															0		
															3		
CO1	3	2	1	-	-	-	-	-	-	-	-	1	1	1	-	-	
CO2	3	2	1	1	-	-	-	-	-	-	-	1	1	1	1	-	
CO3	3	2	1	-	-	-	-	-	-	-	-	1	-	1	-	-	
CO4	3	2	1	1	-	-	-	-	-	-	-	1	-	1	1	-	
Aver age	3	2	1	0.5	-	-	-	-	-	-	-	1	0.5	1	0.5	-	
Course	e Con	tent:															
L (Ho	urs/		Т (1	Tours	/Weeł	7)		F	P (Hou	rs/We	ek)		Tota	Hour/	Veek		
Wee			1 (1	10015		•)		I	(1100	115/ 110	CK)		Total Hour/Week				
	. x)																
3				-						-				3			
Uni	it		Content & Competency's Competency														
1		Give	Give brief Introduction to Data Analytics. (C2: Comprehension)														
			1. De	efine	the	follov	ving	terms	: Da	ta Vis	sualiza	tion,	correlat	ion, Re	egres	sion,	
					-					-	1: Kno	-					
			 Describe Fundamentals of Big Data. (C2: Comprehension) Analyze Big Data Technology Component. (C4: Analysis) 														
				•	U				-	•		•	,	Compro	hand	on)	
			 Explain Big Data Architecture and Big Data Warehouse. (C2: Comprehension) Distinguish Functional vs Procedural programming models for Big Data. (C2: 														
			Comprehension)							(02.							
2			1. Ex	plain	Hado	op Eo	cosyst	em w	ith H	DFS, N	MapRe	duce,]	Pig Ove	rview,	Pig C	Brunt	
			Sh	ell. (O	C2: Co	ompre	hensi	on)									
										-	hensio	n)					
					-			-			ledge)		C	1 .	`		
3										D and	Spark	к. (C2	Comp	ehensic	on)		
3			l. Di					in big utatio									
						ore on	-										

	2. Discuss big data computational limitations. (C2: Comprehension)
	3. Explain Big data analytics and framework for big data analysis. (C2:
	Comprehension)
4	1. Describe Approaches for analysis of big data. (C2: Comprehension)
	2. Define Decision trees. (C1: Knowledge).
	3. Explain predictive analysis on big data. (C2: Comprehension)
	4. Discuss Text analysis and big data using twitter data. (C2: Comprehension)
	5. Explain the role of data analyst. (C2: Comprehension)
	6. Explain following: BI, Business View of IT applications, Digital Data, Why,
	What and How BI? BI project life cycle. (C2: Comprehension)
	7. Differentiate OLTP vs OLAP. (C2: Comprehension)

Learning Strategies	Contact Hours	
Lecture	30	
Practical		
Seminar/Journal Club	2	
Small Group Discussion (SGD)	2	
Self-Directed Learning (SDL) / Tutorial	2	
Problem Based Learning (PBL)	2	
Case/Project Based Learning (CBL)	3	
Revision	4	
Others If any:		
Total Number of Contact Hours	45	

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Quiz	Mid Semester Examination 2
Seminars	University Examination
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)

Nature of Asses	ssment	C01	CO2	CO3	CO4
Quiz		~	~	~	v
Assignment / Pr	esentation	~	~	~	v
Unit test		 ✓ 	~	~	v
Mid Semester E	xamination 1	~	~	~	~
Mid Semester E	xamination 2	•	~	~	~
University Exan	nination	 ✓ 	·	~	v
References:	Emerging Business In Wiley CIO, 2013. ISB 2. Alapati Sam R., Exj Spark, YARN, and HI	telligence an N 978-8126 pert Hadoop	d Analytic T 544691. Administrati	rends for T	, Big Data, Big Analytics: Coday's Businesses (1 ed.), ging, Tuning, and Securing 7. ISBN 978- 9386873538.
	References: 1. T. white, Hadoop: T 1449311520.	The Definitiv	e Guide (3 e	d.), O' Rei	lly Media, 2012. ISBN 978-

Name of	the Department	Computer Science Engineering					
Name of	the Program	B. Tech.					
Course C	Code						
Course T	`itle	Data Visualization Lab					
Academi	ic Year	III					
Semester		VI					
Number	of Credits	1					
Course P	rerequisite	NIL					
Course S	ynopsis	To enable students with a basic understanding of recent advancements in Big Data and using insights, statistical models, visualization techniques for its effective application in Business intelligence. The course covers topics like: Big Data Technology Landscape, Business implementation of Big data, Hive (ETL), Pig, sparkR, Hadoop, framework for big data analysis, OLTP vs OLAP, Tableau.					
	Dutcomes: d of the course, students will be	able to:					
CO1	Develop in depth understanding of the key technologies in data science and busines analytics: Extraction transformation and loading (ETL) using Hive and Pig, machine learning, predictive modelling and visualization techniques.						
CO2	Work with Big Data framework: Hadoop (HDFS and MapReduce), Hadoop Ecosystem & spark.						
CO3	Employ cutting edge tools and technologies to analyze Big Data.						
	Understanding the concept of analysis of big data.						

COs	РО	РО	РО	РО	РО	PO	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO3	PSO4
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
CO1	3	2	1	-	-	-	-	-	-	-	-	1	-	-	1	-
CO2	3	2	1	-	-	-	-	-	-	-	-	1	1	1	1	-
CO3	3	2	1	-	-	-	-	-	-	-	-	1	-	-	1	-
CO4	3	2	1	1	1	-	-	-	-	-	-	1	1	1	1	-
Average	3	2	1	0.5	0.5	-	-	-	-	-	-	1	0.5	0.5	1	-
														l		
Course	Conte	nt:														
			alr)		T (1	Tour	all	alt	D (Hound	Waa	1-)	т	otol I		
]	L (Hou	IFS/ VV E	ek)		1 (1	Hour	s/We	ек)	P (Hours	/ vv ee	К)	1	otal H	lour/Wo	eĸ
		0				0)			2					2	
						Co	ntent	& Co	mpete	ency						
Sr. No.]	ſitle						
1		Insta	11 Ora	cle Vi	tual h	ox ar	nd cre	ate tw	o VM	s on yo	ur lar	nton (C3· A1	mlicat	ion)	
												-			1011)	
2		Insta	ll Tur	oo C ii	1 gues	t OS	and e	xecute	e C pro	ogram.	(C3:	Applie	cation)			
3		Test	ping c	omma	nd to	test t	he co	mmun	icatio	1 betwe	een th	e gues	st OS a	ind Ho	st OS.	
		(C5:	Synth	esis)												
4			Develop a simple hadoop application called Word Count. It counts the number of								per of					
		occurrences of each word in a given input set. (C5: Synthesis)														
5		Develop hadoop application to count no of characters, no of words and each character frequency. (C5: Synthesis)														
6		Develop hadoop application to process given data and produce results such as finding the														
			_	_			_		-	age. (C	_					C
7			•	-	••		-		•		-				as how	•
										S-M #n			111 1011	owing	format.	UF-F
		(C5:	Synth	esis)												

8	Establish an AWS account. Use the AWS Management Console to launch an EC2 instance and connect to it. (C5: Synthesis)
9.	Design a protocol and use Simple Queue Service(SQS)to implement the barrier synchronization after the first phase. (C5: Synthesis)
10	Use the Zookeeper to implement the coordination model in Problem 10. (C3: Application)
Note:	

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	15
Seminar/Journal Club	
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	05
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	30

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination

(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Nature of Assessn	CO1	CO2	CO3	CO4		
Quiz						
VIVA			~	~	~	~
Assignment / Prese	entation					
Unit test						
Practical Log Book	k/ Record Book		~	~	~	~
Mid-Semester Example	mination 1					
Mid-Semester Exam	mination 2					
University Examin	ation		~	~	~	~
Feedback Process	1	1. Student's Feedback	ĸ			
		2. Course Exit Survey	y			
References:		i,Michele Chambers and ng Business Intelligence	-		-	

 Businesses (1 ed.), Wiley CIO, 2013. ISBN 978-8126544691. 2. Alapati Sam R., Expert Hadoop Administration: Managing, Tuning, and Securing Spark, YARN, and HDFS (1 ed.), Pearson Education, 2017. ISBN 978- 9386873538.
References: 1. T. white, Hadoop: The Definitive Guide (3 ed.), O' Reilly Media, 2012. ISBN 978-1449311520.

SEMESTER - VII

Course Code	Course Title
	Industrial Engineering
	Heat and Mass Transfer
	Automation in Manufacturing
	Machine Learning for Mechanical Engineering
Program Elect	ives Course - V
	Renewable Energy
	Rapid Manufacturing Technologies
	Work Study
	Mechatronics
	Chassis Design
	Heat and Mass Transfer Lab
	Automation in Manufacturing Lab
	Machine Learning for Mechanical Engineering
	Lab
	Industrial Training-II
	Capstone Project
Minor Elective Co	ourse-V (Robotics)
	Cognitive Robotics
	Cognitive Robotics Lab
Minor Elective Cours	e-V (Electric Vehicles)
	Modelling and Simulation of EHV
	Modelling and Simulation of EHV Lab

Minor Elective Course-V (Computer Science Engineering)						
	Software Engineering					
	Software Engineering Lab					

Name of	the Department	Mechanical Engineering					
Name of	the Program	B. Tech.					
Course	Code						
Course 7	Fitle	Industrial Engineering					
Academ	ic Year	IV					
Semeste	r	VII					
Number	of Credits	3					
Course l	rse Prerequisite Manufacturing Processes and Technology						
Course Synopsis		This course introduces the concepts of manufacturin economics and its critical parameters. Introducing thoroughl the concepts of Productivity, Fixed and Variable costs Materials management, EOQ, Inventory managemen Quality management, Production planning and control an Management Information systems.					
Course	Outcomes:						
At the en	nd of the course, students will	be able to:					
CO1	Define and measure variou	as productivities in industrial manufacturing.					
CO2	Perform full cost analysis	for a manufacturing system.					
CO3	Understand the concept of	Inventory control and its application.					
CO4	Explain key features of Ind	dustrial and Quality Management.					
Mapping Outcom		to Program Outcomes (POs)& Program Specific					

COs	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	-	-	-	1	2	1	2	3	3	3	3	3	2	-
CO2	3	-	-	-	2	2	1	2	3	3	3	2	3	2	1
CO3	3	-	-	-	2	2	1	2	3	3	3	3	3	1	-
CO4	3	-	-	-	2	2	1	2	3	3	3	2	3	3	-
Average	3	-	-	-	1.75	2	1	2	3	3	3	2.5	3	2	0.25
	I				1							I	1	1	1

Course C	Content:										
L (I	Hours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week							
	3	0	0	3							
Unit	Conter	nt & Competencies									
1	Definition	of Industrial Engineer	ring:								
	Objectives	: Understanding the obj	ectives of industrial eng	gineering (C1)							
	Method stu	dy: Learning about the	concept and techniques	s of method study (C2)							
	Principle of	of motion economy: Une	derstanding the princip	les of motion economy							
		al engineering (C2)	0 1 1								
	Technique	s of method study - Var	rious charts, THERBL	IGS: Learning differen							
	_	and tools used in r		-							
	THERBLI		5,								
		surement - various me	thods: Understanding	different methods used							
			e								
		for work measurement in industrial engineering (C2) Time study PMTS, determining time: Learning about time study techniques and									
	-	how to determine time for different tasks (C3)									
			nd application of work sampling ir								
	-		e concept and appricati	on or work sampring r							
		industrial engineering (C2) Numerical: Applying numerical methods and calculations in industrial									
	engineering (C2)										
	Productivity & Workforce Management:										
		ty - Definition: Und		nt and definition o							
		y in industrial engineeri	-	pt and definition of							
	-	ethods of measurement	-	athods used to measur							
			•	emous used to measur							
	-	ty in industrial settings (factors that influence							
		ffecting productivity:	-	factors that influence							
	*	ty in the workplace (C2)									
	-		luctivity: Learning about various strategies and								
	approaches to improve productivity (C3)										
		Various methods of Job evaluation & merit rating: Understanding different									
		methods used for job evaluation and merit rating (C3)									
		Various incentive payment schemes: Learning about different incentive									
		chemes used to motivate									
		aspects: Understandi	•	human behavior of							
	-	y and workforce manag									
		incentives: Learning		inancial incentives in							
		employees and increasi	ing productivity (C3)								
2		ring Cost Analysis:									
	Fixed & va	ariable costs: Understan	ding the concept of fix	ed and variable costs i							

manufacturing (C1)
Direct, indirect & overhead costs: Differentiating between direct, indirect, and overhead costs in manufacturing (C2)
Job costing: Understanding the principles and methods of job costing in
manufacturing (C2)
Recovery of overheads: Learning about the techniques and approaches for
overhead recovery in manufacturing (C2)
Standard costing: Understanding the concept and application of standard costing
in manufacturing (C2)
Cost control: Learning strategies and techniques for controlling costs in
manufacturing (C3)
Cost variance Analysis - Labor, material, overhead in volume, rate & efficiency:
Analyzing cost variances in labor, material, and overhead based on volume,
rate, and efficiency (C3)
Break even Analysis, Marginal costing & contribution: Understanding break-
even analysis, marginal costing, and contribution in manufacturing (C2)
Numerical: Applying numerical methods and calculations in manufacturing cost
analysis (C2)
Materials Management:
Strategic importance of materials in manufacturing industries: Understanding
the strategic importance of materials in manufacturing (C1)
Relevant costs: Identifying and analyzing relevant costs in materials
management (C2)
Introduction to Forecasting:
Simple & Weighted moving average methods: Learning about simple and
weighted moving average methods for forecasting (C2)
Objectives & variables of PPC: Understanding the objectives and variables of
production planning and control (C1)
Aggregate planning - Basic Concept, its relations with other decision areas:
Understanding the concept of aggregate planning and its relationship with other
decision areas in manufacturing (C2)
Decision options - Basic & mixed strategies: Exploring basic and mixed
strategies for decision making in manufacturing (C2)
Master production schedule (MPS): Understanding the concept and importance
of the master production schedule in manufacturing (C2)
Scheduling Operations: Learning various methods for scheduling operations in manufacturing including line and intermittent production systems (C_2)
manufacturing, including line and intermittent production systems (C3)
Various methods for line & intermittent production systems, Gantt chart:
Applying various methods and tools, such as Gantt charts, for scheduling line and intermittent production systems $(C2)$
and intermittent production systems (C2)

	Introduction to JIT: Understanding the basics of Just-in-Time (JIT)
	manufacturing (C1)
	Numerical: Applying numerical methods and calculations in forecasting and
	production planning (C2)
2	
3	Purchase discounts: Understanding the concept and calculation of purchase
	discounts in inventory management (C2)
	Sensitivity analysis: Analyzing the impact of changes in variables on inventory management decisions (C3)
	Inventory control systems - P, Q, S's Systems: Understanding different
	inventory control systems, including the P system, Q system, and S system (C2)
	Service level: Understanding the concept of service level and its importance in
	inventory management (C1)
	Stock out risk: Assessing and managing the risk of stockouts in inventory
	management (C2)
	Determination of order point & safety stock: Calculating the order point and
	safety stock levels to ensure efficient inventory management (C2)
	Selective inventory control - ABC, FSN, SDE, VED and three-dimensional:
	Understanding and implementing selective inventory control methods, such as
	ABC analysis, FSN analysis, SDE analysis, VED analysis, and three-
	dimensional analysis (C3)
	Numericals: Applying numerical methods and calculations in inventory control
	and management (C2)
4	Product Design and Development:
	Understanding various approaches to product design and development (C2)
	Knowledge of the product life cycle and its stages (C2)
	Recognizing the role of 3S's (Standardization, Simplification, Specialization) in
	product design (C1)
	Introduction to value engineering and analysis in product development (C1)
	Understanding the importance of ergonomics in product development (C1)
	Definition of quality:
	Understanding the concept of quality and its definition (C1)
	Familiarity with various approaches to achieving quality (C2)
	Concept of quality assurance systems:
	Knowledge of different quality assurance systems (C2)
	Understanding the costs associated with quality (C2)
	Statistical quality control (SQC):
	Understanding the principles of statistical quality control (C2)
	Knowledge of variables and attributes in SQC (C2)
	Ability to use X, R, P, and C-charts for quality control (C3)
	Acceptance sampling:

Knowledge of acceptance sampling techniques (C2)
Understanding the concept of the operating characteristic (OC) curve (C2)
Familiarity with the concept of average outgoing quality limit (AOQL) (C2)
Knowledge of single, double, and sequential sampling plans (C2)
Introduction to Total Quality Management (TQM) and ISO-9000:
Understanding the concept of Total Quality Management (TQM) (C1)
Familiarity with ISO-9000 standards for quality management (C1)

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours	
Lecture	27	
Practical		
Seminar/Journal Club	2	
Small Group Discussion (SGD)	4	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	8	
Case/Project Based Learning (CBL)		
Revision	4	
Others If any:		
Total Number of Contact Hours	45	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessm	nent	CO1	CO2	CO3	CO4		
Assignment / Prese	entation	✓	✓	✓	✓		
Mid Semester Exam	mination 1		✓	✓	 ✓ 	 ✓ 	
Mid Semester Exam	mination 2		✓	✓	✓	✓	
University Examin	ation		✓	✓	 ✓ 	•	
Feedback Process	5	1. Student's Fe	edback				
		2. Course Exit Survey					
Students Feedback	is taken through various	steps					
1. Regular fee	edback through Mentor M	lentee system.					
	etween the semester thro						
3. Course Exi	t Survey will be taken at	the end of semeste	er.				
References:	(List of reference books						
	1. Industrial Engineering Swati Sharma (2013) 8185749136						
	 Industrial Engineering and production management by Martand Telsang (2006) S Chand; 2nd Revised Edition 2018 edition ISBN-13: 978- 8121917735 						
	3. Industrial Engineering Publications (2018) IS		•	Thanna D	hanpat Ra	ai	

			I	Facul	lty of	f Eng	ginee	ering	and 7	Fechr	nolog	у			
Name of t	Ν	Mechanical Engineering													
Name of t	he Pr	ogra	m			В	. Tec	h.							
Course Co	ode														
Course Ti	tle					H	leat a	nd Ma	ass Tra	ansfer					
Academic	Year	•				Г	V								
Semester						V	ΊΙ								
Number o	f Cre	dits				3									
Course Pr	erequ	uisite	:			E	ngine	ering	Therr	nodyr	namics	5			
Course Sy	•					o tr se p th si	f heat ansfer eparat rocess ne case milar	excha are k ely or ses are e of di ity to	inger a cinetic jointly mode ffusior	and ma proces y. Stud eled by and c adiatio	ass transses the sing the similation similation of the similation of the second	nsfer. H at may nem apa ar math tion (the	leat trai occur art is sin aematic ere is n	sfer, pri nsfer an and be mpler, b al equat o mass-t ore effic	d mass studied ut both ions in ransfer
Course Ou	tcome	es:							<u> </u>	<u> </u>					
At the end of	of the	course	e, stuc	lents v	vill be	able	to:								
CO1		•	-	-		fluid r	necha	nics, t	hermo	dynam	ics, he	at trans	fer for	designii	ng heat
				er sys											
CO2								<u>^</u>				· ·		rrelatior	
CO3								_	-			p predic	ctive co	orrelation	l.
CO4	App	oly the	e basic	e princ	riples	of hea	t excl	nanger	applic	cations	•				
Mapping Outcomes		urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (]	POs)&	k Prog	ram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO2	PSO3
CO1	3	1	2	2	1	1	0	1	0	0	0	3	2	3	1
CO2	3	2	3	3	2	1	0	0	0	1	1	3	1	3	3
CO3	3	2	3	3	2	1	0	0	0	0	1	3	-	3	3
CO4	3	3	3	3	3	2	0	0	1	1	0	3	-	3	2
Average	3	2	2.75	2.75	2	1.25	0	0.25	0.25	0.5	0.5	3	0.75	3	2.25

L (I	Hours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Weel				
	3	0	0	3				
Unit	Conten	t & Competencies						
1		epts of heat transfer: ling the modes of heat t	ransfer: conduction, co	nvection, and radiation				
	Familiarity General eq Knowledge Ability to c	with the laws governin uation of heat conduction of the general equation lerive the equation in Ca sional steady-state heat	on: n of heat conduction (C artesian and cylindrical					
	Knowledge	Understanding of one-dimensional steady-state heat conduction (C2) Knowledge of heat transfer in simple geometries such as plane walls, cylinders, and spheres (C3)						
	Familiarity Understand	Heat transfer in composite walls, cylinders, and spheres: Familiarity with heat transfer in composite walls, cylinders, and spheres (C2) Understanding the concept of critical thickness of insulation (C2) Thermal contact resistance:						
	Ability to c Electrical a	e of thermal contact resi calculate and analyze ov nalogy: ling the concept of us	erall heat transfer coef					
	analysis (C Heat gener	 ation in plane walls, cyl with heat generation in 	inders, and spheres:					
	Understand characterist	ling the concept of tics (C2)	extended surfaces ar	nd their heat transfe				
2	Understand Knowledge conduction	Three-dimensional stead ling of two- and three-d e of analytical, graphic problems (C3)	imensional steady-state	e heat conduction (C2)				
	Familiarity Understand transient he	tate heat conduction: with unsteady state healing of lumped parameter eat conduction (C3) sional numbers in cond	ter systems and their a	pplication in analyzin				

	number and their significance in conduction problems (C3)
	Types and applications of fins:
	Understanding the different types of fins and their applications in heat transfer (C2)
	Fin efficiency and effectiveness:
	Knowledge of fin efficiency and effectiveness and their importance in
	evaluating the performance of fins (C3)
	Fin performance:
	Familiarity with factors affecting the performance of fins and their optimization
	(C2)
3	Boundary layer theory:
	Understanding of boundary layer theory and its application to fluid flow (C2)
	Conservation equations for laminar flow:
	Knowledge of conservation equations of mass, momentum, and energy for
	laminar flow over a flat plate (C3)
	Turbulent flow over a flat plate:
	Familiarity with the behaviour of turbulent flow over a flat plate (C2)
	Internal flow through pipes and annular spaces:
	Understanding of internal flow characteristics and calculations for pipes and
	annular spaces (C3)
	Analogy between momentum and heat transfer:
	Knowledge of the analogy between momentum and heat transfer in fluid flow
	(C3)
	Natural convection in vertical:
	Familiarity with natural convection phenomena in vertical orientations (C2)
	Dimensional analysis:
	Understanding of dimensional analysis and its application in fluid flow and heat
	transfer problems (C3)
4	Condensation and Boiling:
	Understanding of condensation and boiling processes (C2)
	Knowledge of film-wise and drop-wise condensation (C3)
	Familiarity with film condensation on a vertical plate (C2)
	Understanding of different regimes of boiling (C2)
	Knowledge of forced convection boiling (C3)
	Radiation heat transfer:
	Understanding of radiation heat transfer (C2)
	Familiarity with thermal radiation and the laws governing radiation (C2)
	Knowledge of the black body concept and emissive power (C3)
	Understanding of radiation shape factor and its significance (C2)
	Familiarity with gray bodies and radiation shields (C2)
	r annuarty with Stuy boulds and radiation sinclus (C2)

Heat Exchangers:
Knowledge of different types of heat exchangers and their practical applications
(C3)
Understanding of the use of Log Mean Temperature Difference (LMTD) and
effectiveness-NTU methods in heat exchanger analysis (C3)
Familiarity with compact heat exchangers, including plate heat exchangers (C2)
Understanding of fouling factors and their impact on heat exchanger
performance (C2)
Knowledge of heat pipes and their applications (C3)

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours	
Lecture	25	
Practical		
Seminar/Journal Club	5	
Small Group Discussion (SGD)	5	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision	5	
Others If any:		
Total Number of Contact Hours	45	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessment	CO1	CO2	CO3	CO4
Assignment / Presentation	✓	✓	✓	✓

Mid Semester Exa	mination 1										
Mid Semester Exa	mination 2		√	✓	✓	✓					
University Examin	ation		✓	✓	✓	✓					
Feedback Process		1. Student's Fee	edback								
		2. Course Exit Survey									
Students Feedback	is taken through various	steps									
1. Regular fee	dback through Mentor M	lentee system.									
2. Feedback b	etween the semester through	ugh google forms.									
	t Survey will be taken at										
References:	(List of reference books	3)									
	(i)R. C. Sachdeva (2005) International (P) Ltd. ISB			Mass Tr	ansfer, N	ew Age					
				Hill Publ	lishing C	ompany					
	Limited. ISBN: 978-0-	<i>at 114110101, 1444 1</i> ,	er, Tata McGraw Hill Publishing Company								
	070-60653-1.										
	iii) J. P. Holman (2005),	Heat Transfer, 9th	Edition,	McGrav	v-Hill Pu	blishing					
	Company Limited.										
	ISBN: 978-0-070-29618-3		(
	iv) Dewitt Lavine, Bergm	nann and Incropera	(2010), ł	Fundame	ntals of F	leat and					
	Mass Transfer, 6th Edition John Wiley &	Song ISBN: 079 9	126 52	764.0							
	6th Edition, John Wiley & v) M. NecatOzisik, Held				loat Trar	ocfor					
		,									
	Francis, ISBN 9780367		cations, 2nd Edition, CRC Press, Taylor & 20671								

Facult	y of Engineering and Technology
Name of the Department	Mechanical Engineering
Name of the Program	B. Tech.
Course Code	
Course Title	Automation in Manufacturing
Academic Year	IV
Semester	VII
Number of Credits	2
Course Prerequisite	Manufacturing Processes and Technology
Course Synopsis	Automation in manufacturing is the use of computer systems to assist in the creation, modification, analysis, or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. Students learn the importance of CAD/CAM principles in the Product development, programs related to manufacturing using codes and analyze the importance of networking in the manufacturing environment.

Course Outcomes:

At the end of the course, students will be able to:

CO1	To understand the importance of Automation in Manufacturing.
CO2	To develop programs related to manufacturing using codes.
CO3	To understand the concept of group technology and flexible manufacturing system.
CO4	To understand in details about computer integrated manufacturing.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	-	-	-	1	-	3	2	3	1	1
CO2	3	2	3	3	3	-	-	-	1	-	-	2	3	1	I
CO3	3	2	1	1	2	-	-	-	2	-	2	3	3	2	-

CO4	3	2	1	1	1	_			3	2	3	2	3	3	1				
Average	3			1.5	1.75					2			3	1.75	0.5				
	3	2.25	1.5	1.5	1.75	-	-	-	1.75	2	2.7	2.25							
Course C	Cont	ent:																	
L (H	Hours/	/Week	:)		T (E	lours/	Week)	P (1	Hours/	Week)		Total Hour/Week						
2 0							0				2								
Unit			Cont	ent &	c Con	npete	encies	5											
1		Тур	es an	d stra	tegies	s of a	utom	ation:											
		Und	lersta	nding	, of di	ffere	nt typ	bes of	autom	ation	(C2)								
		Kno	wled	ge of	strate	egies	for ir	nplem	enting	autor	natior	n in va	rious ir	ndustries	s (C3)				
					•				ts circ										
				•	-			•		-				cuits (C					
				-			/orkir	ng pri	nciple	s and	appli	cation	is of p	neumati	c and				
		-		•	ems (,													
					macl					1:	1- :	. 4.0 . 1.0	(C2)						
				-				-	es used					ing tool	(C2)				
				-			-		autom		systen	lis wit		ine tool	s(C3)				
					-						nsfer	mech	nisms	in auto	mated				
			ems (, 01 1	neem	umeu	1000	ing ui	ia tiu	10101	meene		in uuto	matea				
		-			mach	ine t	ool co	ontrol	in auto	omatio	on (C3	3)							
				-	machine tool control in automation (C3) ork part transport and mechanical buffer storage:														
		Fam	niliari	ty wi	th me	thods	s of w	ork p	art trar	nsport	in aut	tomate	ed syste	ems (C2))				
		Und	lersta	nding	of m	echa	nical	buffe	r storag	ge in a	utom	ation ((C2)						
		Kno	wled	ge of	contr	ol fu	nctio	ns rela	ated to	work	part t	ranspo	ort and	buffer s	torage				
		(C3)																	
			U						ns in a					_					
				nding	, of c	lesig	n con	sidera	ations	in the	e impl	lement	tation of	of autor	nation				
		(C3)		C	c 1 ·	<i>.</i>		• 1	·· · ·	. ,		1 /							
				-					tions I	or aut	omate	ea syst	ems (C	.2)					
			•		tomat				ated to		mated	flow	lines (C	1 2)					
				•										buffer s	torage				
		(C3)		lanie	, or u	ic uil	ar y 510	, 01 tl	ansiel	11103	vv 1t11	unu w	inout	ound 3	use				
		. ,		ge of	partia	al aut	omat	ion ar	nd its in	nplen	nentat	ion (C	3)						
2					terial					1		(-	,						
							-		of eq	uipme	ent us	ed in	autom	ated m	aterial				

	bandling $(C2)$
	handling (C2)
	Knowledge of the functions and capabilities of material handling systems (C3)
	Ability to analyze and design efficient material handling systems (C4)
	Familiarity with conveyor systems and their applications (C2)
	Knowledge of automated guided vehicle (AGV) systems and their operation
	(C3)
	Automated storage systems:
	Understanding of automated storage and retrieval systems (AS/RS) (C2)
	Knowledge of work-in-process storage and its integration with manufacturing
	processes (C3)
	Ability to interface handling and storage systems with manufacturing operations
	(C4)
3	Introduction to part families:
	Understanding the concept of part families and their importance in
	manufacturing (C2)
	Parts classification and cooling:
	Knowledge of different methods of parts classification (C2)
	Understanding the importance of cooling in manufacturing processes (C2)
	Group technology machine cells:
	Familiarity with group technology and its application in machine cells (C2)
	Understanding the benefits of implementing group technology in manufacturing
	(C3)
	Process Planning:
	Knowledge of Computer-Aided Process Planning (CAPP) (C2)
	Understanding the different types of CAPP systems (C3)
	Flexible manufacturing systems (FMS):
	Understanding the concept and components of flexible manufacturing systems
	(C2)
	Familiarity with Computer-Integrated Manufacturing Systems (CIMS) (C3)
	Knowledge of Computer-Aided Design/Computer-Aided Manufacturing
	(CAD/CAM) (C2)
4	Introduction to NC, CNC, DNC:
	Understanding the concepts of Numerical Control (NC), Computer Numerical
	Control (CNC), and Distributed Numerical Control (DNC) (C2)
	Manual part Programming:
	Familiarity with manual programming techniques for NC/CNC machines (C2)
	Ability to write NC codes manually for basic machining operations (C3)
	Computer Assisted Part Programming:
	Knowledge of Computer Assisted Part Programming methods (C2)
	Understanding the use of software tools to generate NC codes for machining

operations (C3)
Examples using NC codes:
Ability to analyze and interpret sample NC code programs (C3)
Understanding the sequence of commands and operations in NC code (C2)
Adaptive Control:
Familiarity with Adaptive Control systems and their application in machining
processes (C2)
Understanding the benefits and challenges of adaptive control (C3)
Canned cycles and subroutines:
Knowledge of canned cycles and subroutines in CNC programming (C2)
Ability to use predefined machining cycles and subroutines to simplify
programming tasks (C3)
CAD/CAM approach to NC part programming:
Understanding the integration of Computer-Aided Design (CAD) and
Computer-Aided Manufacturing (CAM) in NC part programming (C2)
Knowledge of using CAD/CAM software to generate NC programs directly
from 3D models (C3)
APT language, machining from 3D models:
Familiarity with APT (Automatically Programmed Tools) language for NC
programming (C2)
Ability to generate NC programs from 3D models using APT or similar
programming languages (C3)
Feeshing Learning Strategies and Contact Hours

Teaching -	Learning	Strategies	and Conta	ct Hours
I cuching	Louinns	Strategies	unu contu	ct mours

Teaching - Learning Strategies	Contact Hours	
Lecture	17	
Practical		
Seminar/Journal Club	2	
Small Group Discussion (SGD)	2	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	8	
Case/Project Based Learning (CBL)		
Revision	1	
Others If any:		
Total Number of Contact Hours	30	

Assessment Methods:

Formative	Summative
-----------	-----------

Multiple Choice	Questions (MCQ)	Mid Semeste	Mid Semester Examination 1								
Viva-voce		Mid Semester Examination 2 (Mid Term 3 is									
		optional)									
Assignments		University E	nd Term	Examin	ation						
Student Seminar		Project									
Problem Based L	earning (PRI)										
	essment with COs										
Nature of Assess	sment		CO1	CO2	CO3	CO4					
Assignment / Pre	sentation		✓	✓	✓	✓					
Mid Semester Ex	amination 1		✓	✓	✓	✓					
Mid Semester Ex	amination 2		✓	✓	✓	 ✓ 					
University Exam	ination		✓	✓	✓	✓					
Feedback Proce	SS	1. Student's Fe	edback								
		2. Course Exit	Course Exit Survey								
 Regular f Feedback 	ck is taken through various s eedback through Mentor Me between the semester throu xit Survey will be taken at the (List of reference books)	entee system. Igh google forms he end of semest									
	 Mikell P. Groover (20 Integrated Manufactur 120-33418-2. Ibrahim Zeid (2009), Hill International Editi P N Rao (2010), CAD McGraw-Hill Education James A. Rehg and Manufacturing, 3rd Education 	ing, 3rd Edition, Mastering CAD/ on, ISBN: 978-0-0 /CAM Principles on, ISBN: 978-0-0 Henry W. Krael	Pearson CAM, 2: 070-151: and App 70-6819 bber (20	Education nd Edition 34-5. lications, 3-4. 04), Corr	on. ISBN on, Tata 3rd Edit: nputer Ir	: 978-8- McGraw ion, Tata ntegrated					

			F	Facul	ty of	f Eng	ginee	ering	and 7	Fechr	nolog	у				
Name of th	ie De	parti	ment			Ν	Iecha	nical	Engin	eering	5					
Name of th	ie Pr	ograi	m			В	B. Tech.									
Course Co	de															
Course Tit	le					Ν	Iachi	ne Lea	arning	for M	lechar	nical E	Engineer	rs		
Academic	Year	•				Γ	V									
Semester	V	ΊΙ														
Number of	f Cre	dits				1										
Course Pro	erequ	isite				N	IA									
Course Sy	e Synopsis This course deals with the basics of program (Python) and use of linear Algebra, Sta probabilistic distributions etc. in it. Basics of M learning, data interpretation and mathematical too Regression analysis and its types used in w machine learning models. This course also incl brief introduction to Neural Networks and its uses.								a, Sta s of Ma ical too d in v so inclu	tistics, achine ls like arious ides a						
Course Ou At the end of CO1	of the	e cour							om no	rmal o	compu	ter pr	ogramm	ning.		
CO2	Abl	e to i	nterp	ret a §	given	data	for dı	awing	g infer	ence,	foreca	sting	etc.			
CO3			algori	•	y emp	oloy v	variou	s mat	hemat	ical to	ols to	devel	lop a ma	achine		
CO4	Abl	e to u	inders	stand	the b	asic s	tructu	ire an	d appl	icatio	ns of]	Neura	l Netwo	orks.		
Mapping o Outcomes:		urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (]	POs)ð	k Pro		-		
COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3	
CO1	3	3	1	1	1	-	-	-	1	-	3	2	3	1	1	
CO2	3	2	3	3	3	_	_	_	1	_	_	2	3	1	-	
CO3	3	2	1	1	2		_	_	2	_	2	3	3	2		
	2	. ~ '	- ·	· ·	-	I	1	1	-	1	. ~	-		· ~	1	

Average	3	2.25	1.5	1.5	1.75	-	-	-	1.75	2	2.7	2.25	3	1.75	0.5	
	1															
Course (Cont	ent:														
L (Hours	/Week	x)		T (F	Iours/	Week)		P (Hours	/Week))	Tota	l Hour/	Week	
	1					0				0				1		
Unit			Cont	ent &	: Con	npete	ncies									
1		Pros	pram	ning	in Pv	thon a	and L	ibrar	ies (Nu	impy.	Panda	as. Ma	tplotlih	, Seabo	rn):	
1			-	-	•				Python					, Deu ee		
				-			-	-	-	-	-		das, M	atplotli	b. and	
			•			•			ysis, a					1	,	
			ear Al			-			5			,	,			
		Und	lersta	nding	and	applio	cation	of li	near al	gebra	conce	epts us	ing Py	thon (C	3)	
		Abi	lity to) perf	orm 1	matriz	x opei	ation	ns, solv	ve line	ear equ	uation	s, and c	compute	e eigen	
		valu	ies an	d eig	envec	ctors u	using	Pyth	on (C3)						
		Stat	istics	, Prot	abili	ty and	l Prob	abili	ty Dist	ributi	ons w	ith Py	thon:			
				0				-	nd pro		•	•	,			
				•		-	•			-			, perfo	rm sta	tistical	
			•			-		oility	distrib	oution	s (C3)					
			chine		-		-				• 1	C	1.	ı .	$\langle \mathbf{C} \mathbf{O} \rangle$	
				-					-	-	-			learnin	- · ·	
			hods	-	anne	rent i	nachn	ie ie	arning	argor	unins,	techn	iques, a	and eval	uation	
				. ,	ning s		mnute	r Dro	ogram:							
									ne le		g ar	nd tr	adition	al con	nputer	
				-			s (C2)			armi	5 ui	iu u	aution		nputer	
									limitat	ions o	of mad	chine l	earning	g compa	ared to	
				-			-							5 F -		
	conventional programming (C2) Application of Machine Learning:															
	Understanding the various real-world applications and domains where ma								achine							
		learning is utilized (C2) Knowledge of how machine learning is applied in fields such as fin														
										nance,						
	healthcare, marketing, etc. (C2)															
		Rela	ation	betwe	een va	ariabl	es:									
		Und	lersta	nding	the	conc	ept of	the	relatio	onship	betw	veen v	ariable	s in a o	dataset	
		(C2	·													
			•		-	nd in	terpre	t cor	relation	ns and	l depe	ndenci	ies betv	veen va	riables	
			ig Pyt		,											
		Sup	ervise	ed Le	arnin	g Vs	Unsur	pervi	sed Le	arning	g:					

r	
	Differentiating between supervised and unsupervised learning algorithms (C2)
	Understanding the concepts of labeled and unlabeled data and their roles in machine learning (C2)
	Semi-Supervised Learning:
	Understanding the concept of semi-supervised learning and its applications (C2)
	Knowledge of techniques that leverage both labeled and unlabeled data for
	training models (C2)
	Reinforcement Learning:
	Understanding the principles and algorithms of reinforcement learning (C2)
	Knowledge of how reinforcement learning is used to train agents to make
	sequential decisions (C2)
2	Prediction:
2	Differentiating between dependent variable (response variable) and independent
	variables (predictor variables) in the context of prediction (C2)
	Understanding the concepts of reducible error and irreducible error in prediction
	models (C2)
	Knowledge of expected value and variance as measures of central tendency and
	variability in prediction (C2)
	Inference:
	Understanding the role of predictors in making inferences about the response
	variable (C2)
	Analyzing the relationship between the response variable and predictors using
	statistical techniques (C2)
	Learning Methods:
	Differentiating between parametric and non-parametric learning methods (C2)
	Understanding the characteristics and assumptions of parametric and non-
	parametric models (C2)
	Model Flexibility vs. Interpretability:
	Understanding the trade-off between model flexibility and interpretability (C2)
	Evaluating the pros and cons of using more flexible models in terms of
	interpretability (C2)
	Model Accuracy and Selection:
	Assessing the quality of fit of a model to the data (C2) Understanding the concent of bias variance trade off in model accuracy (C2)
	Understanding the concept of bias-variance trade-off in model accuracy (C2) Knowledge of the Bayes classifier and its application in classification tasks (C2)
	Knowledge of the Bayes classifier and its application in classification tasks (C2) Understanding the K-Nearest Neighbors (KNN) algorithm and its use in
	prediction (C2)
3	Linear Regression:
	Understanding the basic concepts of linear regression (C2)
	Constructing a regression model for predicting the relationship between
	constructing a regression model for predicting the relationship between

	variables (C2)
	Selecting predictor variables for inclusion in the regression model (C2)
	Determining the functional form of the regression equation (C2)
	Recognizing the scope and limitations of the regression model (C2)
	Uses of Regression Analysis:
	Identifying the various uses of regression analysis, including description,
	control, and prediction (C2)
	Understanding the relationship between regression analysis and causality (C2)
	Formal Statement of Model:
	Formulating the formal statement of the regression model (C2)
	Recognizing important features of the regression model (C2)
	Understanding the meaning and interpretation of regression parameters (C2)
	Following the steps involved in regression analysis (C2)
	Estimation of Regression Function:
	Estimating the regression coefficients using the least squares method (C2)
	Applying gradient descent for estimating the variance terms in the regression
	model (C2)
4	Accuracy of Coefficients and Model:
	Evaluating the accuracy of regression coefficients (C3)
	Assessing the accuracy of the regression model using measures such as residual
	standard error and R-squared statistics (C3)
	Linear Methods of Classification:
	Understanding the basic concepts of linear classification methods (C3)
	Exploring examples that demonstrate the use of linear classification (C3)
	Recognizing the limitations of using linear regression for classification tasks
	(C3)
	Logistic Regression:
	Understanding the logistic regression model for binary classification (C4)
	Estimating the regression coefficients in logistic regression (C4)
	Extending logistic regression to handle multiple predictors (C4)
	Linear Discriminant Analysis:
	Understanding the linear discriminant analysis method for classification (C4)
	Nearest Neighbor Method:
	Exploring the nearest neighbor method for classification (C4)
	Machine Learning Models:
	Understanding the decision tree model for classification (C4)
	Exploring the support vector machine algorithm for classification (C4)
	Unsupervised Learning:
	Understanding the concept of unsupervised learning (C3)
	rning Stratagies and Contact Hours

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours	
Lecture	10	
Practical		
Seminar/Journal Club	1	
Small Group Discussion (SGD)	1	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	02	
Case/Project Based Learning (CBL)		
Revision	1	
Others If any:		
Total Number of Contact Hours	15	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Mapping of Assessment with COs

Nature of Assessment		CO1	CO2	CO3	CO4			
Assignment / Presentation		✓	1	✓	✓			
Mid Semester Examination 1	✓	✓	✓	✓				
Mid Semester Examination 2		✓	~	✓	✓			
University Examination	University Examination							
Feedback Process	1. Student's Fee	Feedback						
	2. Course Exit	Survey						

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:	(List of reference books)
	 "An Introduction to Machine Learning", by Gopinath Rebala, Ajay Ravi, Sanjay Churiwala,1st Edition, 2019, ISBN: 3030157288 "Machine Learning", by Jaime G. Carbonell, Tom M. Mitchell, Volume-1, 2014 Edition, Publisher Elsevier, ISBN 9780080510545 "Neural Networks and Learning Machines", by Simon O. Haykin, Prentice Hall India Learning Private Limited; 3 edition (2010), ISBN-10: 8131763773

Faculty of Engineering and Technology																	
Name of t	he De	epart	ment			N	/lecha	nical	Engin	eering	g						
Name of t	he Pr	ogra	m			E	B. Tec	h.									
Course Co	ode																
Course Ti	tle					F	Renewable Energy										
Academic	Year	•				Г	V										
Semester						V	/II										
Number o	f Cre	dits				3											
Course Pr	erequ	uisite	•			A	pplie	d The	ermod	ynami	cs						
Course O						Renewable energy is a form of energy that comes from natural resources like sunlight, geothermal heat, wind, or hydel power. From sunlight, we get energy in the form of solar energy, from the wind we get wind power energy, from the force of the flow of the river we get hydel energy. There is also geothermal energy available in nature. Those energies are called renewable as the source of those energies will not get finished anyway. In the course of Renewable Energy, students need both theoretical and practical knowledge to understand the entire concept of renewable energy with ease. There are lots of things to learn in this course, such as energy infrastructure, rational use of energy, energy conservation, and management, energy policies, energy regulations, energy- environment interface, and many more.							orm of 7, from There nergies vill not Energy, dge to h ease. energy vation,				
At the end																	
CO1					•				Ū.		ewable	e energy	y systen	n.			
CO2						0			osystei								
CO3			will b			•		change	es in fu	unctior	nality i	n a com	ponent	t will aff	ect the		
CO4	Stu	dents	will b	be abl	le to			ories	and er	nulator	rs of r	enewab	ole ener	rgy syst	ems to		
Mapping Outcomes	of Co		elevan Outc			s) to	Prog	ram (Outco	mes (POs)&	& Prog	ram S	pecific			
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 11	PO 12	PS O1	PSO2	PSO3		
CO1	1 3	2	3	4 2	5	6 2	7	8	9	10	- 11	12	01 2	3	1		
CO2	3	1	3	2	2	1	2			_		3	1	3	3		
CO3					2			-	-		-		1				
	3	3	3	3	-	1	2	-	-	1	-	3	-	3	3		

CO4	3	3	1	3	2	2	2	-	-	-	-	3	-	3	2
Average	3	2	2.5	2.5	1	1.5	1.5	0	0	0.25	0	2.75	0.75	3	2.25
Course (Cont	ent:		I				L							
L (I	Hours	/Week	x)		T (H	[ours/	Week)	P (Hours/	Week))	Total	Hour/	Week
	3					0				0				3	
Unit		(Content & Competencies												
1		Und Forn Ider ther Com Und vari Seco Exp tran Ene Und Froi Exp Com Ider gas, Rold Und Soci Ene Ana indu Proj Exa Curr Exp Und Soci Exp Com Ider gas, Rold Und Soci Exp Com Ider gas, Rold Und Soci Exp Com Ider gas, Rold Und Soci Exp Com Ider Exp Com Ider Exp Com Ider Exp Com Ider Seco Exp Com Ider Seco Exp Com Ider gas, Rold Und Soci Exp Com Ider gas, Rold Und Soci Ene Ene Und Soci Exp Com Ider gas, Rold Und Soci Ene Ene Und Soci Exp Com Ider Soci Ene Ene Ider Soci Ene Ene Ider Soci Ene Ene Ider Soci Ene Ene Und Soci Ene Ene Ider Soci Ene Ene Ider Soci Ene Ene Ider Soci Ene Ene Ider Soci Ene Ene Ider Soci Ene Ene Ider Soci Ene Ene Ider Soci Ene Ene Ider Soci Ene Ene Ider Ene Ene Ider Ene Ene Ider Ene Ider Ene Ene Ider Ene Ene Ider Ene Ene Ene Ider Ene Ene Ider Ene Ene Ene Ider Ene Ene Ider Ene Ider Ene Ene Ider Ene Ider Ene Ider Ene Ider Ene Ider Ider Ider Ene Ider Ider Ene Ider Ider Ider Ider Ider Ider Ider Ide	lersta ms of ntifyin mal, o iserva lersta ous s ond la ilainin sfer a rgy fl lersta cesses gin an iloring iventi nucle e of e lersta etal c rgy c ilyzin istrial jected minin rent tr onen lersta	nding energ ng an electr nding ystem aw of ng the aw of nd tim g the cond tim g the consur g ener l tin g the cond tim g the consur g the consur tin g the consur tin g the cond tim g the consur tin g the tin g the consur tin g the consur tin g the tin g the consur tin g the consur tin g the tin g the tin g the tin g the tin g the tin g the tin g the tin t	gy: ad de ical, c of ene g the is (C2 therm e secco iagran g the onvers iagran g the onvers iagran g the onvers iagran g the convers iagran g the convers iagran g the onvers iagran g the convers iagran g the onvers iagran g the onvers iagran g the onvers iagran g the convers iagran g the onvers iagran g the convers iagran g the iagran g the j the	once scrib chemi- rgy: princ) nodyr ond la ion (n to t flow le of tion (n to t flow le of tion (n to t flow cribi- and h conor sign 2) n in v onsum orojeo rowth e in e mplic	pt and ing c ical, e iple iamic aw of C2) he ea of en fossil of fos rces: ng cc ng c	d defi different etc. (C of co es: f ther rth: nergy fuels esil fu onven electure velop ce o s sector (C2) f or t f of co s sector f or t f of co s sector f or t f or f f or t f or f f or t f or f or	ent fo C1) nserva modyn f from :: els and tional ic pov pment f ener tors: tterns i he nex energy (C2) sumpti he exp	rms of ation of namics the s d their energy er (C2 and so gy in an diff t centur dema on:	of ene of ene and and un to geolo y sou 2) ocial tr drivi erent ury: and a ial rise	ergy s ergy an its imp the ea ogical t rces li ransfor ng eco sectors nd con e in en	various uch as nd its a plicatio arth thr time sca tke coa tke coa rmation onomic s such a nsumpt ergy us ors (C2	mech applicat ns on ough v ale (C2 l, oil, r grown as resid ion bas age on	anical, tion in energy /arious) natural th and lential, sed on

	Identifying and categorizing different energy resources based on their
	availability and utilization (C2)
	Impact of exponential rise in energy usage on the global economy:
	Analyzing the economic consequences and challenges associated with the rapid
	growth of energy consumption (C3)
	Energy demand and Energy dilemma index:
	Exploring the concept of energy demand and the complexities involved in
	balancing energy supply and demand (C3)
	Classification of energy resources:
	Categorizing energy resources as conventional/non-conventional and
	renewable/non-renewable (C2)
	Green energy and clean energy:
	Defining and understanding the concepts of green energy and clean energy with
	relevant examples (C1)
	Green footprint, Carbon footprint, Ecological footprint concepts:
	Explaining the concepts of green footprint, carbon footprint, and ecological
2	footprint in relation to environmental impact assessment (C1)Energy resources available in India:
2	
	Understanding the energy resources available in India, including fossil fuels
	(coal, oil, natural gas) and renewable energy sources (solar, wind, hydro,
	biomass) (C2)
	Urban and rural energy consumption:
	Analyzing the differences in energy consumption patterns between urban and
	rural areas, including factors influencing energy usage (C3)
	Energy consumption pattern and its variation as a function of time:
	Examining the trends and variations in energy consumption over time,
	considering factors such as population growth, industrialization, and
	technological advancements (C3)
	Nuclear energy - promise and future:
	Exploring the potential and future prospects of nuclear energy as a source of
	power generation, including its benefits, challenges, and safety concerns (C3)
	Energy as a factor limiting growth:
	Understanding the role of energy availability and affordability as a critical
	factor in economic growth and development (C2)
	Need for use of new and renewable energy sources:
	Recognizing the importance of transitioning towards new and renewable energy
	sources to mitigate environmental impact, reduce dependence on fossil fuels,
	and ensure long-term sustainability (C2)
	National Green Tribunal (NGT) Act, NGT activities:
	Understanding the purpose, provisions, and functioning of the National Green
	onderstanding the purpose, provisions, and functioning of the traditial Green

	Tribunal (NGT), as well as its role in addressing environmental issues and
	enforcing environmental laws (C3)
	Environmental degradation due to energy production and utilization:
	Recognizing the negative environmental impacts associated with energy
	production and consumption, including air and water pollution, habitat
	destruction, and ecosystem disruption (C2)
	Air and water pollution, depletion of ozone layer, global warming:
	Understanding the environmental consequences of energy-related activities,
	such as emissions of pollutants, depletion of ozone layer, and contribution to
	global warming and climate change (C2)
	Biological damage due to environmental degradation:
	Exploring the adverse effects of environmental degradation on biodiversity,
	ecosystems, and human health (C2)
	Environmental effects of thermal power station, nuclear power generation,
	hydroelectric power, geothermal power, ocean energy harvesting, wind energy
	harvesting, solar energy harvesting, bioenergy:
	Analyzing the specific environmental impacts associated with different types of
	power generation and renewable energy sources (C3)
3	Solar constant:
	Understanding the concept of solar constant, which refers to the amount of solar
	electromagnetic radiation received at the outer atmosphere of Earth (C1)
	Solar radiation spectrum:
	Exploring the spectrum of solar radiation, which includes different wavelengths
	and energy levels of electromagnetic radiation emitted by the sun (C1)
	Classification of solar cells:
	Familiarizing with the classification of solar cells based on their generations and
	materials used (C2)
	First generation: Single crystalline, polycrystalline solar cells (C2)
	Second generation: Thin-film solar cells, CdS, CIGs (C2)
	Third generation: Polymer-based solar cells, DSSC, perovskites, hybrid,
	quantum dots, multi-junction tandem cells (C2)
	Organic, inorganic, and hybrid solar cells (C2)
	Key elements of silicon solar cell:
	Understanding the essential components and working principles of a silicon
	solar cell, including the p-n junction and photovoltaic effect (C3)
	PV solar cell, module, panel, and array:
	Differentiating between the terms PV solar cell, module, panel, and array, and
	understanding their roles in solar energy conversion and utilization (C2)
	Solar thermal systems types:
	Exploring the different types of solar thermal systems, such as flat-plate

r	
	collectors, concentrating collectors, and solar water heaters (C2)
	Applications of solar PV and solar thermal systems:
	Examining the various applications of solar photovoltaic (PV) systems,
	including residential, commercial, and utility-scale solar power generation (C3)
	Understanding the applications of solar thermal systems for water heating, space
	heating, and industrial processes (C3)
	Wind energy:
	Introduction to wind energy as a renewable source of power generation (C1)
	Principle of wind energy conversion:
	Understanding the principle of converting wind energy into electrical energy
	using wind turbines (C2)
	Advantages and disadvantages of windmills:
	Evaluating the advantages and disadvantages of utilizing windmills for
	electricity generation, considering factors such as cost, intermittency,
	environmental impact, and location requirements (C3)
	Applications of wind energy:
	Exploring the various applications of wind energy, including utility-scale wind
	farms, decentralized wind power systems, and off-grid power generation (C2)
4	Geothermal energy:
	Introduction to geothermal energy as a renewable energy source derived from
	the heat within the Earth's crust (C1)
	Estimates of geothermal power and understanding the potential of geothermal
	resources (C2)
	Different types of geothermal resources: hydrothermal (convective) resources,
	geo-pressured resources, hot dry rock resources of petrothermal systems, and
	magma resources (C2)
	Interconnection of geothermal and fossil systems and their significance (C3)
	Assessing the advantages and disadvantages of geothermal energy compared to
	other forms of energy (C3)
	Ocean energy:
	Introduction to ocean energy and its potential as a renewable energy source (C1)
	Principle of ocean thermal energy conversion (OTEC) and harnessing
	temperature differences in ocean waters for power generation (C2)
	Tidal power generation and the utilization of tidal movements to generate
	electricity (C2)
	Wave energy conversion and technologies for capturing energy from ocean waves (C^2)
	waves (C2) Evaluating the advantages and disadvantages of accord anarray compared to other
	Evaluating the advantages and disadvantages of ocean energy compared to other (C_2)
	energy forms (C3)
	Bio-energy:

Energy from biomass and its significance as a renewable energy source (C1)
Sources of biomass and different biomass species used for energy production (C2)
Conversion processes of biomass into fuels, including fermentation, pyrolysis, gasification, and combustion (C2)
Biogas plants and the properties and characteristics of biogas (C2)

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
Lecture	25
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessment	CO1	CO2	CO3	CO4
Assignment / Presentation	✓	✓	✓	✓
Mid Semester Examination 1	✓	✓	✓	✓
Mid Semester Examination 2	✓	✓	✓	✓
University Examination	~	✓	✓	✓

Feedback Process	Feedback Process1. Student's Feedback					
	2. Course Exit Survey					
Students Feedback	k is taken through various steps					
1. Regular fee	edback through Mentor M	entee system.				
2. Feedback b	Feedback between the semester through google forms.					
3. Course Exi	3. Course Exit Survey will be taken at the end of semester.					
References:	References: (List of reference books)					
	i) Non-Conventional Energy Resources by B.H. Khan, Tata McGraw Hill Pu 2009.					
	ii) Fundamentals of Renew Ghosal, Narosa Pub., 2007	vable Energy Resources by G. N. Tiwari, M. K. 7.				
		erials to Device Technology edited by S. K. Sharma,				
	iv) Rational Design of Solar Cells for Efficient Solar Energy Conversion edited by Alagarsamy Pandikumar, Ramasamy Ramaraj, Wiley.					
	v) Energy fables, Edited by edited by Jenny Rinkinen, Elizabeth Shove, Jacopo Torriti, Routledge a T&F group, (2019).					

			F	Facu	lty of	f Eng	ginee	ering	and [Fechr	nolog	у			
Name of th	N	Mechanical Engineering													
Name of th	E	B. Tech.													
Course Co	ode														
Course Tit	R	Rapid Manufacturing Technologies													
Academic	Г	IV													
Semester						V	/II								
Number of	f Cre	dits				3									
Course Pro	erequ	ıisite	:					•		•		ogy, N	lanufact	turing	
Course Sy	nops	Processes and Technology nopsis The syllabus includes importance of rapid ac manufacturing in advance manufacturing process technology used in Rapid manufacturing. Data form acquire knowledge, techniques and skills to select re additive and rapid manufacturing process. It also incase studies to explore the potential of rapid manufacturing different industrial sectors.								s and nats to elevant ncludes					
Course Ou	itcon	nes:									-				
At the end	of the	e cou	rse, st	uden	ts wil	l be a	able to):							
CO1	To	under	stand	vario	ous R	apid	manu	factur	ing te	chnol	ogies.				
CO2		unde totypi		d the	e use	of t	echni	ques	for p	process	sing o	of CA	D mod	lels for	rapid
CO3				the u	ise of	rapio	d man	ufacti	uring	techno	ology i	n reve	erse eng	gineerin	g.
CO4	Uno	lersta	ind an	id app	oly fu	ndarr	nental	s of ra	apid p	rototy	ping te	echnic	lues.		
Mapping of Outcomes	:	-	-	-				-			,		0	•	
COs	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	1	1	1	3	2	1	-	-	-	1	3	3	-	-
CO2	3	2	1	2	3	1	-	-	-	-	1	2	3	2	-
CO3	3	1	1	1	3	2	1	-	-	-	1	2	3	2	-
CO4	3	2	2	2	2	1	-	1	-	-	-	2	3	1	1
			1	1	1	1	1		1	1	1	I	1	1	1

Course C			D	
L (Hours/Week)		T (Hours/Week)	P (Hours/Week)	Total Hour/Week
	3	0	0	3
Unit	Conten	t & Competencies		
1	Introductio Overview of manufactur Understand Recognizin (C1) Classificati Differentia manufactur Understand rapid manu Identifying (C2) Challenges	n to Rapid Manufacturi of Rapid Manufacturin ting (C1) ling the key aspects of ting (C1) og the need for efficient on of Rapid Manufacturing between additional processes (C2) ling the process chain affacturing processes (C2) the advantages and 15 in Rapid Manufacturin og the challenges fa	g as a concept and its of customization and ent and accelerated m uring Processes: tive, subtractive, an involved in additive m 2) imitations of rapid ma	mass customization in anufacturing processes nd formative rapid anufacturing and other nufacturing techniques
	Understand optimizatio Exploring	ling the need for address on, and quality control i	ssing issues such as main rapid manufacturing (ment areas to overcontanufacturing (anufacturing (C3)	(C3)
2	(C2) Converting manufactur Diagnosing manufactur Considerin results (C2) Slicing the manufactur Post proces Removing	ling the process of pre- c CAD models into S ring systems (C2) g and identifying en- ring process (C2) g part orientation and s) e 3D model into lay ring process (C2) ssing: support material from t	paring a CAD model for STL files, which are for prors in STL files support generation/desi yers to create a tool he manufactured part (0 e printed part through v	compatible with rapid to ensure a smooth gn for optimal printing path pattern for the C1)

n post-processing methods
ppearance of the additive
ppearance of the additive
aturad products based on
ctured products based on
•
ring:
e vat photo polymerization-
1 .11 1 1
, layer thickness, and resin
vat photo polymerization-
merization-based additive
f powder bed fusion-based
canning speed, and powder
powder bed fusion-based
d fusion-based additive
of extrusion-based additive
ameter, layer height, and
extrusion-based processes
itive manufacturing (C3)
of material jetting-based
lroplet spacing, and curing
of material jetting-based
sed additive manufacturing

	(C3)
	Binder Jetting-Based Additive Manufacturing:
	Understanding the process and working principles of binder jetting-based
	additive manufacturing (C3)
	Exploring process parameters such as binder saturation, layer thickness, and
	powder type (C3)
	Recognizing the advantages and disadvantages of binder jetting-based processes
	(C3)
	Identifying suitable materials for binder jetting-based additive manufacturing (C3)
	Direct Energy Deposition-Based Additive Manufacturing:
	Understanding the process and working principles of direct energy deposition-
	based additive manufacturing (C4)
	Exploring process parameters such as laser power, powder feed rate, and
	scanning speed (C4)
	Recognizing the advantages and disadvantages of direct energy deposition-
	based processes (C4)
	Identifying suitable materials for direct energy deposition-based additive
	manufacturing (C4)
	Sheet Lamination-Based Additive Manufacturing:
	Understanding the process and working principles of sheet lamination-based
	additive manufacturing (C2)
	Exploring process parameters such as sheet thickness, adhesive type, and
	pressure applied (C2)
	Recognizing the advantages and disadvantages of sheet lamination-based
	processes (C2)
	Identifying suitable materials for sheet lamination-based additive manufacturing
	(C2)
4	Case Study of Additive Manufacturing Processes:
	In the Medical Field:
	Application of additive manufacturing in the production of patient-specific
	implants, prosthetics, and surgical guides (C5)
	Case studies highlighting the use of additive manufacturing in creating custom-
	fit medical devices (C5)
	Advantages of additive manufacturing in the medical field, such as reduced lead
	time and improved patient outcomes (C5)
	In the Automobile Sector:
	Application of additive manufacturing in rapid prototyping of automotive
	components (C4)
	Case studies showcasing the use of additive manufacturing for tooling and jigs
	case states biotreasing the use of additive manufacturing for tooning and jigs

in automotive manufacturing (C4)
Advantages of additive manufacturing in the automobile sector, such as cost
reduction and design flexibility (C4)
In the Defense Industry:
Application of additive manufacturing in the production of lightweight and
complex defense parts (C5)
Case studies highlighting the use of additive manufacturing for rapid production
of spare parts in military operations (C5)
Advantages of additive manufacturing in the defense industry, such as enhanced
customization and supply chain resilience (C5)
In the Aerospace Industry:
Application of additive manufacturing in the production of aerospace
components, such as turbine blades and structural parts (C5)
Case studies showcasing the use of additive manufacturing for lightweighting
and performance optimization in aerospace (C5)
Advantages of additive manufacturing in the aerospace industry, such as
reduced weight and improved fuel efficiency (C5)
In Other Fields like Arts, Fashion, and Jewelry:
Application of additive manufacturing in the creation of intricate and
customized art pieces, fashion accessories, and jewelry (C3)
Case studies highlighting the use of additive manufacturing for on-demand
production and unique designs (C3)
Advantages of additive manufacturing in arts, fashion, and jewelry, such as
design freedom and rapid production (C3) Repid Manufacturing Processes: Subtractive:
Rapid Manufacturing Processes: Subtractive:
Understanding the subtractive manufacturing processes such as CNC machining
and milling (C3)
Exploring case studies where subtractive manufacturing is used for rapid
production of parts (C3)
Applications and advantages of subtractive manufacturing in terms of precision
and material versatility (C3)
Rapid Manufacturing Processes: Formative:
Understanding the formative manufacturing processes such as injection molding
and casting (C3)
Exploring case studies where formative manufacturing is used for rapid
production of parts (C3)
Applications and advantages of formative manufacturing in terms of high-
volume production and material properties (C3)
Process Selection, Applications, and Case Studies:
Understanding the factors influencing the selection of additive manufacturing

processes based on requirements and constraints (C4) Exploring real-world applications and case studies across various industries where additive manufacturing processes are applied (C4) Analyzing the advantages, limitations, and suitability of different additive manufacturing processes for specific applications (C4)

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
Lecture	32
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	2
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	4
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessment	CO1	CO2	CO3	CO4
Assignment / Presentation	✓	 ✓ 	✓	~
Mid Semester Examination 1	~	✓	~	~
Mid Semester Examination 2	✓	✓	~	~
University Examination	~	✓	~	~

Feedback Proc	ess 1. Student's Feedback					
	2. Course Exit Survey					
Students Feedba	ck is taken through various steps					
1. Regular	feedback through Mentor Mentee system.					
2. Feedbac	k between the semester through google forms.					
3. Course I	Exit Survey will be taken at the end of semester.					
References:	(List of reference books)					
	1. Gibson, I., Rosen, D., Stucker, B. (2016), "Additive Manufacturing					
	Technologies: 3D Printing, Rapid Prototyping, and Direct Digital					
Manufacturing", Germany: Springer New York, ISBN: 9781493944						
	149394455X					
	2. Gebhardt, A. (2012). Understanding Additive Manufacturing: Rapid					
	Prototyping, Rapid Tooling, Rapid Manufacturing. Germany: Hanser					
	Publications, ISBN: 9783446425521, 3446425527					
	3. Hötter, J., Gebhardt, A. (2016), "Additive Manufacturing: 3D Printing for					
	Prototyping and Manufacturing", Germany: Hanser Publications, ISBN: 9781569905821, 1569905827					
	 Cooper, K. (2001), "Rapid Prototyping Technology: Selection and 					
	Application", United States: Taylor & Francis, ISBN: 9780824745240,					
	0824745248					

Faculty	of Engineering and Technology
Name of the Department	Mechanical Engineering
Name of the Program	B. Tech.
Course Code	
Course Title	Work Study
Academic Year	IV
Semester	VII
Number of Credits	3
Course Prerequisite	Nil
Course Synopsis	This is a course based on Work study and industrial engineering play important role in job simplification, job design, job enrichment, value analysis/engineering, method analysis, operational analysis, etc. Work study has been utilized by companies to job productivity. Industrial engineering is the latest method employed to improve productivity. It deals with design, enhancement and setting up of engineering systems encompassing plants, machinery, workers, etc.

At the end of the course, students will be able to:

CO1	Understanding of various productivities and work study in industrial manufacturing.
CO2	Understanding of Micro and Memo Motion Study.
CO3	Understanding of the concept of Work Measurement.
CO4	Understanding of different Ratings and Incentives.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	РО 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	1	2	2	1	1	0	1	0	0	0	3	1	-	-
CO2	3	2	3	3	2	1	0	0	0	1	1	3	1	-	-
CO3	3	2	3	3	2	1	0	0	0	0	1	3	1	-	-
CO4	3	3	3	3	3	2	0	0	1	1	0	3	1	-	-
Average	3	2	2.75	2.75	2	1.25	0	0.25	0.25	0.5	0.5	3	1	-	-

Course C	lours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week						
	3	0	0	3						
T T •4			0	5						
Unit	Conten	t & Competencies								
1		on to Work-Study Pro	ductivity:							
	Productivit									
		Definition of productivity and its significance in individual enterprises (C2) Understanding the role of management in enhancing productivity (C3)								
		Measurement of productivity in various aspects such as materials, buildings, machines, and power (C3)								
		-	and the need for pro	ductivity improvement						
		Factors influencing productivity and the need for productivity improvement programs (C3)								
	Work Stud									
		of work study and its ob	ojective in optimizing v	work processes (C2)						
	Scope of	Scope of work study in analyzing and improving work methods and								
	productivit	productivity (C3)								
	Recognizin	Recognizing the importance of human factors in work study and their impact on								
	productivity (C4)									
	Understanding the relationship between work study as									
	-	supervision, and workers (C4)								
2		n to Method Study:	1 1/ 1	1 · 1						
		Method Study is a systematic approach used to analyze and improve work								
		methods and processes within an organization. It involves the identification and elimination of unnecessary steps, activities, and wasteful practices to enhance								
		productivity and efficiency.								
	-	of Method Study and	its significance in opt	imizing work methods						
	(C2)	5	0 1	C						
	Objectives	Objectives of Method Study in improving productivity, quality, and safety (C3)								
	Scope of M	Scope of Method Study in analyzing and optimizing various aspects of work								
	processes (processes (C3)								
	Introductio	Introduction to Activity Recording and Examination Aids used in Method Study								
	(C2)									
		l in Method Study:								
		arts to visualize and an	halyze the sequence of	activities in a process						
	(C3) Elow Proof	a Charta to represent	the movement of mot	miala information and						
		Flow Process Charts to represent the movement of materials, information, and workers in a process (C^2)								
		workers in a process (C3) Travel Charts to record and analyze the movement of workers or materials								
		orkplace (C3)	1,220 the movement 0.							

	Multiple Activity Charts to study and analyze multiple activities performed
	concurrently (C3)
	Micro and Memo Motion Study:
	Principles of Motion Economy for identifying and eliminating wasteful
	movements (C4)
	Classification of Movements to categorize and analyze different types of work
	movements (C4)
	Two-Handed Process Chart to study the simultaneous use of both hands in a
	process (C4)
	SIMO Chart (Simultaneous Motion Chart) to record and analyze multiple
	activities performed simultaneously (C4)
	Micro Motion Study to capture and analyze detailed and precise movements
	(C4)
	Development and Installation of the Improved Method:
	Definition and importance of developing an improved method based on the
	study findings (C3)
	Process of installing the improved method and ensuring its successful
	implementation (C3)
3	Introduction to Work Measurement:
	Work Measurement is the process of establishing the time required to perform a
	specific task or job by a qualified worker working at a defined level of
	performance. It aims to determine the most efficient and effective way of
	completing work tasks and serves as a basis for setting standards, scheduling,
	and resource allocation.
	Definition of Work Measurement and its importance in establishing time
	standards (C2)
	Objectives and benefits of Work Measurement in terms of productivity
	improvement and resource allocation (C3)
	Techniques used in Work Measurement, such as Time Study and Work
	Sampling (C3)
	Work Sampling:
	Need for Work Sampling as a statistical technique to determine the proportion
	of time spent on different activities (C4)
	Confidence Levels and Sample Size Determinations in Work Sampling (C4)
	Application of Work Sampling with simple problems (C4)
	Time Study:
	Definition of Time Study and its role in determining the standard time for a
	specific task (C3)
	Time Study Equipment used to capture and analyze work activities (C3)
	Selection of Jobs for Time Study and steps involved in conducting a Time Study
	selection of 500s for Time Study and steps involved in conducting a Time Study

	(C3)
	Breaking Jobs into Elements to analyze and measure individual work elements
	(C3)
	Recording Information in Time Study, including observations and
	measurements (C3)
	Rating Systems used in Time Study to account for worker performance and
	work conditions (C3)
	Introduction to Ergonomics:
	Definition of Ergonomics and its focus on designing systems that fit the
	capabilities and limitations of humans (C2)
	Areas of Study under Ergonomics, including physical ergonomics, cognitive
	ergonomics, and organizational ergonomics (C2)
	Components of the Man-Machine System and their functions in relation to
	ergonomics (C3)
	Study of Development of Stress in the Human Body and its consequences in
	relation to ergonomics (C3)
	Introduction to Computer-based Ergonomics, Usability Engineering, and
	Human-Computer Interface (C2)
4	Ratings and Incentives:
	Scales of Rating:
	Introduction to Scales of Rating used in work measurement to assess worker
	performance (C2)
	Different types of Rating Scales, such as Graphic Rating Scales and Behavioral
	Rating Scales (C2)
	Factors Affecting Rate of Working:
	Identification of Factors Affecting Rate of Working, such as worker skill level,
	motivation, and work conditions (C2)
	Allowances and Standard Time Determination:
	Definition and importance of Allowances in work measurement to account for
	factors like fatigue and personal needs (C2)
	Determination of Standard Time by considering the time required for the task
	and allowances (C2)
	Predetermined Motion Time Study (PMTS):
	Introduction to Predetermined Motion Time Study (PMTS) as a method for
	analyzing work tasks based on predetermined time values (C3)
	Method Time Measurement (MTM) as a widely used PMTS system, its
	principles, and application (C3)
	Wages and Incentives:
	Introduction to Wages and Incentives as a means of motivating and rewarding
	employees (C2)
	· · · · · · · · · · · · · · · · · · ·

Definition and explanation of Wage Differentials based on factors like job
complexity, skill level, and market conditions (C2)
Methods of Wage Payment, including time-based wages, piece-rate wages, and
performance-based incentives (C3)
Advantages and Disadvantages of different wage payment methods (C3)
Financial Incentives and Non-Financial Incentives:
Overview of Financial Incentives, such as bonuses, profit sharing, and
commission-based systems (C2)
Explanation of Non-Financial Incentives, including recognition, career
advancement opportunities, and work-life balance initiatives (C2)

Teaching - Learning Strategies	Contact Hours
Lecture	25
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4
Assignment / Presentation	~	√	√	~

Mid Semester E	Examination 1	✓	✓	✓	✓			
Mid Semester Examination 2Image: Image: Amage:								
University Exam	nination	✓	~	~	✓			
		I	1	1	1			
Feedback Proc	ess 1. Stude	nt's Feedback						
	2. Cours	e Exit Survey						
Students Feedb	ack is taken through various s	steps						
1. Regular	feedback through Mentor Me	Mentor Mentee system.						
2. Feedbac	k between the semester throu	gh google form	ns.					
3. Course	Exit Survey will be taken at the	ne end of seme	ster.					
References:	(List of reference books)							
	i) Ralph M Barnes -Motion John Wiley, 7th edition 2009.	and Time study	, ISBN:13:9	7898142618	2 Publisher:			
	2 ·	on to France	ice ISBN-1	3.07808/03	73060			
ii) R. S. Bridger -Introduction to Ergonomics, ISBN:13:9780849373060,Publisher Taylor and Francis dated 20th Aug 2008, 3rdEdition								

Facult	Faculty of Engineering and Technology					
Name of the Department	Mechanical Engineering					
Name of the Program	B. Tech.					
Course Code						
Course Title	Mechatronics					
Academic Year	IV					
Semester	VII					
Number of Credits	3					
Course Prerequisite	Basics of Electronics and Electrical Engineering,					
	Instrumentation & Control Engineering					
Course Synopsis	Mechatronics is a design process that includes a combination of mechanical engineering, electrical engineering, control engineering and computer engineering. Mechatronics is a multidisciplinary field of engineering, that is to say, it rejects splitting engineering into separate disciplines. Originally mechatronics just included the combination of mechanics and electronics, hence the word is a combination of mechanics and electronics; however, as technical systems have become more and more complex the word has been "updated" during recent years to include more technical areas.					

Course Outcomes:

At the end of the course, students will be able to:

CO1	Identify the elements of mechatronics system.
CO2	Select suitable sensors and actuators to meet specific requirements.
CO3	Select the controllers according to the need.
CO4	Demonstrate intelligent mechatronics system for engineering applications.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	1	2	1	1	1	1	2	2	3	3	3	2	1
CO2	3	1	2	3	2	1	1	1	2	1	2	2	3	1	2
CO3	3	2	2	2	2	1	1	1	1	1	2	2	3	2	2

CO4	3	2	1	1	2	2	2	2	3	2	3	3	3	2	1
Average	3	1.75	1.5	2	1.75	1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5
Course (Cont	ent:													
L (1	L (Hours/Week) T (Hours/Week))	P (Hours	/Week))	Tota	Hour/	Week
	3					0				0				3	
Unit		(Cont	ent 8	z Con	npete	ncies	5					•		
2		Defined meconomic Como Meconomic Exp gath Imp soft Meconomic App syst Ben effic Ada Intro chan Exp distr Moconomic Such	inition hanic nparis lucts, pone chatro lanati ering ortan ware chatro olicati ering oftan efits ciency ptive oduct nging lanati ribute deling ortan mize erview n as m	n and cal en son o emp nts (Conics ion o conics on o robot of usi y, pre and l ion to cond ion to cond co syste v of	ginee of C bhasiz C2) Desig of the cem de cons onen in Ma f Me ics, at ing M cision Distri o Ada litions of Di stri o Ada litions of Di simu f Mc techn m bel techn m atics	view ring, onver ing t n Pro- e Ma esign siderin ts in t unufac chatro nd Cl lechar n, and buted ptive s or fe stribu lation delin navio iques al mo	of Ma electrinitional he in ocess: echatrinic cechatrinic in de de cturinic onics NC m tronics I flexi l Cont eedba redba redba redba	echatr conics al and tegrat ronics poner e inte esign p g: in M achine s in n ibility trol Sy ck (C2 Contr mpone d Sir) model and co	, and d d Me ion of Des at sele ractio proces lanufa es (C2 nanufa (C2) ystems 2) ol Sy ents o tronica nulati- ling a pmput	compu- conductor f mec f mec ign F ction, n betw s (C2) cturin 2) acturin 2) acturin s; s, whi- s, whi- s, whi- s Syst on in nd sin er sim	iter sc pnics hanica Process and ir ween) g, suc ng pro ch adj s, wh ces (C ems: Mec mulati ulatio	ience approal, ele s, inc ntegrat mecha ch as cesses ust the ere co 2) hatror ng Ma	(C2) paches ctrical, luding tion (C2 anical, of automa s, incluo eir beha ontrol nics to echatro	eld com in des and so require 2) electrica ated ass ding inc avior bas function analyz nics Sy	igning ftware ements al, and embly reased sed on as are e and
2	Architecture of Microprocessor and Microcontroller: Overview of the architecture of a microprocessor, which includes the CF memory, and input/output interfaces (C3) Explanation of the architecture of a microcontroller, which combines														

	microprocessor with on-chip memory and I/O peripherals (C3)
	System Interfacing for Sensors, Keyboard, Display, and Motors:
	Discussion of various interfacing techniques for connecting sensors, keyboards,
	displays, and motors to a microprocessor or microcontroller system (C3)
	Explanation of common protocols and interfaces used for system interfacing,
	such as GPIO, I2C, SPI, and UART (C3)
	Application Cases for Temperature Control, Warning, and Process Control Systems:
	Introduction to application cases where microprocessors or microcontrollers are
	used for temperature control, warning systems, and process control (C3)
	Examples of temperature control systems, such as thermostats or HVAC
	systems, where a microprocessor or microcontroller monitors and adjusts the temperature (C3)
	Application cases for warning systems, where a microprocessor or
	microcontroller detects and signals potential hazards or malfunctions (C3)
	Examples of process control systems, where a microprocessor or
	microcontroller regulates and monitors industrial processes (C3)
3	Architecture of Programmable Logic Controllers (PLCs):
5	Overview of the architecture of a PLC, which consists of a central processing
	unit (CPU), input/output (I/O) modules, memory, and communication interfaces
	(C3)
	Explanation of the different components and their functions within a PLC
	system (C3)
	Input/Output Modules:
	Discussion of the various types of I/O modules used in PLC systems, including
	digital input and output modules, analog input and output modules, and
	specialty modules (C3)
	Explanation of how I/O modules interface with external devices and sensors to
	provide input and output signals to the PLC (C3)
	Programming Methods:
	Introduction to the different programming methods used in PLC systems, such
	as ladder logic, function block diagrams, structured text, and sequential function
	charts (C3)
	Overview of the programming software and tools used for creating and editing
	PLC programs (C3)
	Timers and Counters:
	Explanation of timers and counters as essential instructions in PLC
	programming, used for controlling timing and counting operations (C3)
	Examples of how timers and counters are used to control processes and
	sequence events in a PLC system (C3)
	1

	Master Controls and Bronching
	Master Controls and Branching:
	Discussion of master control instructions that enable the PLC to coordinate and
	control multiple operations or subsystems (C3)
	Explanation of branching instructions that allow for decision-making and
	branching of program execution based on specific conditions or inputs (C3)
	Data Handling:
	Overview of data handling instructions in PLC programming, including data
	manipulation, comparison, and storage operations (C3)
	Examples of how data handling instructions are used to process and manipulate
	data within a PLC program (C3)
	Analog Input/Output:
	Introduction to analog input and output modules in PLC systems, which allow
	for the monitoring and control of analog signals (C3)
	Explanation of analog-to-digital and digital-to-analog conversion and how it is
	utilized in PLC systems (C3)
	Selection of PLC and Troubleshooting:
	Factors to consider when selecting a PLC, such as system requirements, I/O
	capacity, programming capabilities, and communication options (C2)
	Overview of common troubleshooting techniques and strategies for diagnosing
	and resolving issues in PLC systems (C2)
4	Fuzzy Logic Control in Mechatronics:
4	Introduction to fuzzy logic and its applications in control systems (C2)
	Explanation of fuzzy logic control algorithms and how they are used to handle
	uncertain and imprecise information (C2)
	Examples of fuzzy logic control in mechatronic systems, such as temperature
	control, speed control, and decision-making processes (C2)
	Artificial Neural Networks in Mechatronics:
	Overview of artificial neural networks (ANNs) and their role in mechatronic
	systems (C2)
	Explanation of the structure and functioning of ANNs, including neurons,
	layers, and activation functions (C2)
	Applications of ANNs in mechatronic systems, such as pattern recognition,
	prediction, and control (C2)
	Algorithms:
	- in Bourierierie
	Discussion of various algorithms used in mechatronics, including control
	C
	Discussion of various algorithms used in mechatronics, including control
	Discussion of various algorithms used in mechatronics, including control algorithms, optimization algorithms, and machine learning algorithms (C2)
	Discussion of various algorithms used in mechatronics, including control algorithms, optimization algorithms, and machine learning algorithms (C2) Examples of algorithmic techniques used in mechatronic systems, such as PID
	Discussion of various algorithms used in mechatronics, including control algorithms, optimization algorithms, and machine learning algorithms (C2) Examples of algorithmic techniques used in mechatronic systems, such as PID control, genetic algorithms, and backpropagation in neural networks (C2)

Introduction to computer-based instrumentation and its role in data acquisition,
processing, and control in mechatronic systems (C2)
Explanation of different types of sensors and transducers used for measuring
physical quantities in mechatronic systems (C2)
Real-Time Data Acquisition and Control:
Overview of real-time data acquisition and control systems, which involve the
collection and processing of data in real-time for immediate decision-making
and control actions (C2)
Explanation of techniques and protocols used for real-time data acquisition and
control, such as fieldbus systems and industrial communication protocols (C2)
Software Integration:
Discussion of software integration in mechatronic systems, including the
integration of control algorithms, data processing algorithms, and
communication protocols (C2)
Examples of software tools and platforms used for developing and integrating
mechatronic systems (C2)
Man-Machine Interface:
Introduction to man-machine interfaces (MMIs) in mechatronic systems, which
enable interaction and communication between humans and machines (C2)
Explanation of different types of MMIs, such as graphical user interfaces
(GUIs), touchscreens, and voice recognition systems (C2)
Vision System:
Overview of vision systems in mechatronics, which involve the use of cameras
and image processing techniques for visual perception and object recognition
(C2)
Applications of vision systems in mechatronic systems, such as robotics, quality
control, and surveillance (C2)
Mechatronics System Case Studies:
Analysis of real-world case studies where mechatronic systems have been
successfully applied, highlighting their design, implementation, and
performance (C2)
Examination of the challenges faced and the solutions employed in the case
studies (C2)
 ming Stuntoning and Contest House

Teaching - Learning Strategies	Contact Hours
Lecture	30
Practical	
Seminar/Journal Club	5

Small Group Discussion (SGD)	
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Mapping of Assessment with COs

Nature of Assessment		CO1	CO2	CO3	CO4
Assignment / Presentation		~	✓	✓	✓
Mid Semester Examination 1	~	✓	 ✓ 	✓	
Mid Semester Examination 2		~	✓	 ✓ 	✓
University Examination	~	✓	 ✓ 	✓	
Feedback Process		Student's	Feedback		1
	2.	Course E	xit Survey		

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:	(List of reference books)
	 i) W. Bolton (2008), Mechatronics - Electronic Control Systems in Mechanical and Electrical Engineering, 4th Edition, Prentice Hall. ISBN: 978-0-273-74286-9. ii) Devdas Shetty and Richard A. Kolk (2012), Mechatronics System Design, 2nd Edition, C. L.Engineering, ISBN: 978-8-131-51828-1.

Faculty of engineering and Technology				
Name of the Department		Mechanical Engineering		
Name of	f the Program	B. Tech.		
Course	Code			
Course Title		Chassis Design		
Academic Year IV		IV		
Semester VII		VII		
Number of Credits 3				
Course Prerequisite Engineering Graphics and Design				
Course Synopsis		This course is intended to allow you the opportunity to explore engine design fundamentals and learn what you can do to help during the machining process. You will also lear about clutch, gear box, suspension, steering, and fram systems.		
Course Outcomes:				
At the end of the course students will be able to:				
CO1	The student can identify diffe	The student can identify different areas of automobile chassis component design.		
CO2	Design the front axle and Steering system of an automobile.			
CO3	Design the clutch for flawless	s power transmission.		
CO4	Analyze the assembly and ma	aintenance of Gear box of an automobile.		

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

1 2 3 4 5 6 7 8 9 10 11 12 CO1 3 1 2 2 1 1 0 1 0 0 0 3 2 3 CO2 3 2 3 3 2 1 0 0 0 1 3 1 3 <t< th=""><th>S PC</th><th>0 1</th><th>PO</th><th>PO</th><th>PO</th><th>PO</th><th>РО</th><th>PO</th><th>PO</th><th>PO</th><th>PO</th><th>PO</th><th>PO</th><th>PSO1</th><th>PSO2</th><th>PSO3</th></t<>	S PC	0 1	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
CO2 3 2 3 3 2 1 0 1 0 0 0 0 0 1 1 3 1 3 CO3 3 2 3 3 2 1 0 0 0 1 1 3 1 3 CO3 3 2 3 3 2 1 0 0 0 1 3 - 3	1		2	3	4	5	6	7	8	9	10	11	12			
CO3 3 2 3 3 2 1 0 0 0 1 1 3 1 3	1 3	1	1	2	2	1	1	0	1	0	0	0	3	2	3	1
	2 3		2	3	3	2	1	0	0	0	1	1	3	1	3	3
CO4 3 3 3 3 3 2 0 0 1 1 0 3 - 3	3 3		2	3	3	2	1	0	0	0	0	1	3	-	3	3
	4 3		3	3	3	3	2	0	0	1	1	0	3	-	3	2
Average 3 2 2.75 2.75 2 1.25 0 0.25 0.25 0.5 3 0.75 3	erage 3		2	2.75	2.75	2	1.25	0	0.25	0.25	0.5	0.5	3	0.75	3	2.25

L (H	lours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week			
	3	0	0	3			
Unit	Content	Content & Competencies					
1	Study of Loa	ds, Moments, and St	tresses on Frame Members	5:			
	Understandin	g the concept of lo	ads and moments acting of	on frame members in			
	vehicles (C2)						
	Analysis of the	ne distribution of loa	ads and moments on frame	e members (C2)			
	Calculation	Calculation of stresses on frame members using basic structural analysis					
	principles (C	principles (C2)					
	Consideration	n of factors such as	s vehicle weight, payload	, dynamic loads, and			
	operating cor	ditions in load analy	ysis (C2)				
	-	-	nd Commercial Vehicles:				
	Design consi	derations for passer	nger and commercial vehi	cle frames, including			
	structural inte	egrity, stiffness, and	durability (C2)				
	Selection of	suitable materials for	or frame construction, con	sidering factors such			
	as strength, w	veight, and cost (C2))				
		011	and standards to ensure co	ompliance with safety			
	regulations an	regulations and performance requirements (C2)					
	-	-	CAD) software and simul	ation tools for frame			
		ptimization (C2)					
	Design of Le	af Springs:					
			ciples and advantages of le	eaf springs in vehicle			
	suspension sy						
		f the required numb and deflection criter	per of leaves and their dime ria (C2)	ensions based on load			
	Consideration design (C2)	n of material proper	ties and manufacturing pro-	ocesses in leaf spring			
		stress distribution	and optimization of lea	of spring design for			
	-		carrying capacity (C2)	a spring design for			
	Design of Co		currying cupucity (02)				
	-	1 0	heir role in vehicle suspens	sion systems (C2)			
			flection based on load requ	-			
		naracteristics (C2)					
	-		ter, coil diameter, and nu	mber of coils for the			
		g performance (C2)	,				
	1	51	rties, fatigue life, and mai	nufacturing processes			
	in coil spring		, <u>6</u> ,	6 P-000000			
		rsion Bar Springs:					
			gs and their applications i	in vehicle suspension			
		or conston our spring	55 and then applications i	in veniere suspension			

	systems (C2)
	Calculation of torsion bar dimensions and stiffness based on load requirements
	and desired suspension characteristics (C2)
	Consideration of material properties, torsion bar geometry, and mounting
	arrangements in torsion bar spring design (C2)
	Analysis of stress distribution and optimization of torsion bar spring design for
	improved suspension performance (C2)
2	Analysis of Loads, Moments, and Stresses at Different Sections of Front Axle:
	Determination of loads and moments acting on different sections of the front
	axle, considering factors such as vehicle weight, load distribution, and dynamic
	loads (C3)
	Calculation of stresses and deflections at critical sections of the front axle using $t_{\rm constant}$ and $t_{\rm constant}$
	structural analysis methods (C3)
	Evaluation of the strength and durability of the front axle design based on stress $\frac{1}{2}$
	analysis results (C3)
	Optimization of the front axle design to ensure adequate strength and stiffness $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $
	while minimizing weight (C3)
	Determination of Bearing Loads at Kingpin Bearings and Wheel Spindle
	Bearings:
	Calculation of bearing loads at the kingpin bearings and wheel spindle bearings
	based on the applied loads and moments (C3)
	Consideration of factors such as vehicle weight distribution, braking forces, and
	cornering loads in bearing load determination (C3)
	Selection of suitable bearing types and sizes to accommodate the calculated
	bearing loads (C3)
	Verification of bearing selection through analysis of bearing capacity and
	fatigue life (C3)
	Choice of Bearings:
	Understanding different types of bearings suitable for front axle applications,
	such as tapered roller bearings or ball bearings (C2)
	Evaluation of bearing characteristics, including load capacity, stiffness, friction,
	and durability (C2)
	Selection of appropriate bearing types based on application requirements,
	performance considerations, and cost-effectiveness (C2)
	Determination of Optimum Dimensions and Proportions for Steering Linkages:
	Analysis of steering linkages to determine the optimum dimensions and
	proportions for minimum steering error (C3)
	Consideration of factors such as steering geometry, linkage length, angle, and
	pivot locations in the design process (C3)
	Calculation of steering angles, tie rod lengths, and steering arm dimensions to
L	

	achieve desired steering performance (C3)
	Validation of the steering linkage design through simulation or physical testing
	(C3)
	Design of Front Axle Beam:
	Selection of suitable materials for front axle beam construction, considering
	factors such as strength, stiffness, and weight (C2)
	Calculation of the beam dimensions and cross-sectional properties based on load
	requirements and desired deflection characteristics (C3)
	Analysis of stress distribution and optimization of the beam design for improved
	strength and durability (C3)
	Consideration of manufacturing processes, such as forging or welding, in the
	axle beam design (C2)
3	Design of Single Plate Clutch:
	Determination of the torque capacity requirement based on the engine power
	and maximum operating conditions (C3)
	Selection of suitable friction material for the clutch plate, considering factors
	such as coefficient of friction, wear resistance, and heat dissipation (C2)
	Calculation of the clutch plate dimensions, including outer and inner diameters,
	thickness, and number of friction surfaces, to achieve the desired torque
	capacity (C3)
	Design of the clutch cover and pressure plate assembly to provide adequate
	clamping force on the clutch plate (C3)
	Analysis of the contact pressure distribution and thermal performance of the
	clutch design (C3)
	Design of Multi-Plate Clutch:
	Determination of the torque capacity requirement and the number of clutch
	plates based on the engine power and maximum operating conditions (C3)
	Selection of suitable friction material for the clutch plates, considering factors
	such as coefficient of friction, wear resistance, and heat dissipation (C2)
	Calculation of the clutch plate dimensions, including outer and inner diameters,
	thickness, and number of friction surfaces, to achieve the desired torque
	capacity (C3)
	Design of the clutch housing and pressure plate assembly to provide adequate
	clamping force on the clutch plates (C3)
	Analysis of the contact pressure distribution and thermal performance of the
	clutch design (C3)
	Design of Centrifugal Clutch:
	Determination of the required engagement speed and engagement characteristics
	based on the engine speed and desired operating conditions (C3)
	Calculation of the centrifugal force acting on the clutch shoes and determination
L	

	-
	of the required spring force for disengagement (C3)
	Design of the clutch shoe dimensions and geometry to achieve the desired
	engagement and disengagement characteristics (C3)
	Selection of suitable friction material for the clutch shoes, considering factors
	such as coefficient of friction and wear resistance (C2)
	Analysis of the clutch performance, including energy dissipation and torque
	capacity, under different operating conditions (C3)
	Design of Cone Clutch:
	Calculation of the torque capacity requirement based on the engine power and
	maximum operating conditions (C3)
	Design of the cone clutch surfaces, including the cone angles and dimensions, to
	achieve the desired torque capacity and engagement characteristics (C3)
	Selection of suitable friction material for the cone surfaces, considering factors
	such as coefficient of friction and wear resistance (C2)
	Analysis of the contact pressure distribution and thermal performance of the
	clutch design (C3)
	Consideration of the lubrication and cooling requirements for the cone clutch
	design (C2)
4	Basic consideration in design (C3):
	Understand the function and purpose of a design (C3)
	Select suitable materials based on specific requirements (C4)
	Consider safety standards and regulations (C3)
	Take into account ergonomic factors (C4)
	Design for manufacturability (C3)
	Determination of speed range (C2):
	Define the desired range of speeds for the application (C2)
	Analyze torque-speed characteristics (C3)
	Select appropriate power transmission components (C4)
	Consider factors like efficiency and space constraints (C4)
	Concept of structure diagram (C4):
	Create a schematic representation of the overall structure and components (C4)
	Identify main elements and their relationships (C3)
	Visualize flow of energy, signals, or materials (C4)
	Use standard symbols and conventions (C3)
	Label and organize the diagram effectively (C3)
	Graphical representation of Ray and speed diagram (C4):
	Plot torque-speed and power graphs (C3)
	Analyze the relationship between torque, speed, and power (C4)
	Understand the Ray diagram for power output (C4)
	Identify operating points and efficiency (C4)

Gearbox layout (C5):
Determine required gear ratios (C4)
Select suitable gear types based on load capacity and efficiency (C4)
Arrange gears logically to achieve desired ratios (C4)
Consider gear meshing, backlash, lubrication, and housing design (C4)
Optimize layout to minimize size, weight, and power losses (C5)

Teaching - Learning Strategies	Contact Hours	
Lecture	26	
Practical		
Seminar/Journal Club	2	
Small Group Discussion (SGD)	10	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	2	
Case/Project Based Learning (CBL)		
Revision	5	
Others If any:		
Total Number of Contact Hours	45	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4
Assignment / Presentation	~	~	~	✓
Mid Semester Examination 1	~	~	~	 ✓
Mid Semester Examination 2	~	~	~	✓
University Examination	✓	~	~	✓

Feedback Process	1. Student's Feedback					
	2. Course Exit Survey					
Students Feedback is taken through various s	stens					
e	1. Regular feedback through Mentor Mentee system.					
2. Feedback between the semester throu	igh google forms.					
3. Course Exit Survey will be taken at the end of semester.						
References:						
i) Dean Averns, "Automobile Chassis Design", I	llife Book Co., 2001.					
ii) Design of machine Elements by Bhandari, Tata McGraw-Hill Publishing Company Ltd						
iii) Machine Design by Sharma-Agarwal, S.K.Kataria & Sons						
iv) Machine Design by Sadhusingh, Khanna Pub	lishers,					

			I	Facul	lty o	f Eng	ginee	ering	and 7	Fechr	nolog	у			
Name of the Department							Mechanical Engineering								
Name of the Program						В	B. Tech.								
Course Co	ode														
Course Ti	tle					H	Heat and Mass Transfer Laboratory								
Academic	Year	•				Г	IV								
Semester						V	/II								
Number o	of Cre	dits				1									
Course Pr	erequ	uisite	:			E	Ingine	ering	Therr	nodyr	namics				
Course Synopsis An introductory course in heat and mass transfer or conduction, convection and radiation heat transfer, prior of heat exchanger and mass transfer. Heat transfer and transfer are kinetic processes that may occur and be separately or jointly. Studying them apart is simpler, b processes are modeled by similar mathematical equat the case of diffusion and convection (there is no mass-t similarity to heat radiation), and it is thus more efficient.						nciples d mass studied ut both ions in ransfer									
Course Ou	tcome	es:					consider them jointly.								
At the end of	of the	course	e, stuc	lents v	vill be	e able	to:								
CO1		•	-	inciple fer sys			d mechanics, thermodynamics, heat transfer for designing heat								
CO2	Mo	del he	at, ma	iss and	1 mon	nentur	n tran	sport s	system	s and c	leveloj	p predic	tive co	orrelation	1.
CO3	Mo	del he	at, ma	iss and	1 mon	nentur	n tran	sport s	system	s and c	leveloj	p predic	tive co	orrelation	l .
CO4	App	oly the	e basic	princ	ples	of hea	at excl	nanger	applic	cations	•				
Mapping Outcomes		urse	Outc	omes	(CO	s) to	Prog	ram (Outco	mes (POs)&	k Prog	ram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO2	PSO3
CO1	3	1	2	2	1	1	0	1	0	0	0	3	2	3	1
CO2	3	2	3	3	2	1	0	0	0	1	1	3	1	3	3
CO3	3	2	3	3	2	1	0	0	0	0	1	3	-	3	3
CO4	3	3	3	3	3	2	0	0	1	1	0	3	-	3	2
Average	3	2	2.75	2.75	2	1.25	0	0.25	0.25	0.5	0.5	3	0.75	3	2.25

L (H	lours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week					
	0	0	2	2					
Sl.No.	Content	Content & Competencies							
1	To calculate C2)	To calculate thermal conductivity of insulating material in the form of slab. (C1, C2)							
2	To calculat wall. (C2,C		ance and thermal con-	ductivity of composite					
3	To calculate	the thermal conductive	vity of insulating powde	er. (C2, C4)					
4	To calculate	the thermal conductive	vity of given liquid (gly	cerin). (C2, C1)					
5		To calculate the average heat transfer coefficient of vertical cylinder under natural convection. (C2,C3)							
6		To calculate surface heat transfer coefficient for a pipe by forced convection and compare heat transfer coefficient for different air flow rates and heat flow rates.							
7	free and for	To calculate the heat transfer coefficient experimentally and theoretically for free and forced convection and compare the theoretical temperature distribution with experimentally obtained distribution. (C2)							
8	To study the	To study the Boiling Heat Transfer phenomenon for pool boiling of water. (C2)							
9		To conduct test on a heat pipe and compare the temperature distribution and rate of heat transfer with geometrically similar copper and stainless-steel tubes. (C2,							
10	To determin (C2, C1)	To determine the value of Stefan-Boltzmann constant for radiation heat transfer. (C2, C1)							
11		To measure the property of emissivity of the test plate surface at various temperatures.							
12	-		 (C2) To study and compare temperature distribution, heat transfer rate, overall heat transfers coefficient in parallel flow and counter flow heat exchanger. (C2, C4) 						

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	15
Seminar/Journal Club	
Small Group Discussion (SGD)	10

Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	30

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	VIVA
Viva-voce	Practical Examination & Viva-voce
	University Examination

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4		
VIVA	✓	✓	~	✓		
Practical Log Book/ Record Book	✓	✓	✓	✓		
University Examination	✓	✓	✓	\checkmark		
Feedback Process	1. Stud	dent's Fe	edback			
	2. Course Exit Survey					

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

(i)R. C. Sachdeva (2005), Fundamentals of Heat and Mass Transfer, New Age International (P) Ltd. ISBN: 978-8-122-40076-2.

ii) P. K. Nag (2005), Heat Transfer, Tata McGraw Hill Publishing Company Limited. ISBN: 978-0-070-60653-1.

iii) J. P. Holman (2005), Heat Transfer, 9th Edition, McGraw-Hill Publishing Company Limited. ISBN: 978-0-070-29618-3.

iv) Dewitt Lavine, Bergmann and Incropera (2010), Fundamentals of Heat and Mass Transfer, 6th Edition, John Wiley & Sons, ISBN: 978-8-126-52764-9.

v) M. NecatOzisik, Helcio R.B. Orlande (2021), Inverse Heat Transfer: Fundamentals and Applications,

2nd Edition, CRC Press, Taylor & Francis, ISBN 9780367820671.

Faculty	Faculty of Engineering and Technology				
Name of the Department	Mechanical Engineering				
Name of the Program	B. Tech.				
Course Code					
Course Title	Automation in Manufacturing Lab				
Academic Year	IV				
Semester	VII				
Number of Credits	2				
Course Prerequisite	Manufacturing Processes and Technology				
Course Synopsis	Automation in manufacturing lab deals with the use of computer systems to assist in the creation, modification, analysis, or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. Students learn the importance of CAD/CAM principles in the Product development, programs related to manufacturing using codes and analyze the importance of networking in the manufacturing environment.				

Course Outcomes:

At the end of the course, students will be able to:

CO1	To understand the importance of Automation in Manufacturing.
CO2	To develop programs related to manufacturing using codes.
CO3	To understand the concept of group technology and flexible manufacturing system.
CO4	To understand in details about computer integrated manufacturing.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO	PO11	PO	PSO1	PSO2	PSO3									
	1	2	3	4	5	6	7	8	9	10		12			
CO1	3	3	1	1	1	1	1	1	1	1	3	2	3	1	1
CO2	3	2	3	3	3	1	1	1	1	1	1	2	3	1	-
CO3	3	2	1	1	2	1	1	1	2	1	2	3	3	2	-
CO4	3	2	1	1	1	1	1	1	3	2	3	2	3	3	1

Average	3	2.25	1.5	1.5	1.75	1	1	1	1.75	1.25	2.25	2.25	3	1.75	0.5
Course (Con	tent:													
L (1	Hour	s/Weel	k)		T (I	Hours/	Week)		Р	(Hour	s/Week)		Tota	l Hour/	Week
0						0				4				4	
Unit		(Conte	nt & (Comp	etenc	ies								
1		Mak	e the j	part fa	mily/	family	y table	of a l	oolt (C	2)					
2		Tool path generation (C3)													
3		Part programming (C2)													
4		G & M codes development for machining operations (C2)													
5		Physical interpretation of machining features and tool geometries (C2)													
6		Par	t Prog	ramm	ing- C	CNC N	Machir	ning C	Centre						
		i) Linear Cutting.													
			ii))	Circul	ar cu	tting.								
			iii	i)	Cutter	radiu	is Con	npens	ation						
			iv	·)	CANI	NED (cycle o	operat	ion (C	4)					
7		Part	Progra	ammi	ng										
			i)	S	traigh	t, Tap	ber and	l Radi	us Tu	ming.					
			ii)	Т	hread	Cutti	ng.								
			iii)	F	lough	and F	⁷ inish '	Turni	ng Cyo	ele.					
			iv)	Γ	Prilling	g and	Tappi	ng Cy	vcle. (O	24)					
8		Cont	our m	illing	using	CNC	milli	ng ma	chine	(C4)					
9		Spur	gear	cuttin	g in C	NC m	nilling	mach	ine (C	4)					
10	CL Data and Post Process generation using CAM packages. (C3)														

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	30
Seminar/Journal Club	
Small Group Discussion (SGD)	10

Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	20
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	60

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	VIVA
Viva-voce	Practical Examination & Viva-voce
	University Examination

Mapping of Assessment with COs

CO1	CO2	CO3	CO4			
✓	~	✓	\checkmark			
✓	✓	✓	✓			
✓	✓	✓	✓			
1. Student's Feedback						
2. Course Exit Survey						
	✓ ✓ ✓ 1. Stud	 ✓ ✓ ✓ ✓ ✓ ✓ 1. Student's Fee 	Image: white the second sec			

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

- 1. Mikell P. Groover (2008), Automation, Production Systems and Computer Integrated Manufacturing, 3rd Edition, Pearson Education. ISBN: 978-8-120-33418-2.
- 2. Ibrahim Zeid (2009), Mastering CAD/CAM, 2nd Edition, Tata McGraw Hill International Edition, ISBN: 978-0-070- 15134-5.
- 3. P N Rao (2010), CAD/CAM Principles and Applications, 3rd Edition, Tata McGraw-Hill Education, ISBN: 978-0-070- 68193-4.
- 4. James A. Rehg and Henry W. Kraebber (2004), Computer Integrated Manufacturing, 3rd Edition, Pearson Education, ISBN: 978-0-131-13413-3

Faculty of Engineering and Technology																	
Name of the Department								Mechanical Engineering									
Name of th	ne Pr	ograi	m			В	B. Tech.										
Course Co	de																
Course Tit	tle					Ν	Machine Learning for Mechanical Engineers Lab										
Academic	Year	•				Г	V										
Semester						V	ΊΙ										
Number of	f Cre	dits				2											
Course Pr	ereq	uisite				N	IA										
Course SynopsisThis course deals with the basics of (Python) and use of linear Algor probabilistic distributions etc. in it. Bate learning, data interpretation and mathem Regression analysis and its types of machine learning models. This course brief introduction to Neural Networks and							Algebra Basica themation es useo urse als	a, Sta s of Ma ical too d in v so inclu	tistics, achine ls like arious								
Course Ou	itcon	nes:															
At the end	of the	e coui	rse, st	uden	ts wil	l be a	able to):									
CO1	Abl	le to d	liffere	entiat	e mac	hine	learn	ing fr	om no	rmal o	compu	ter pro	ogramm	ning.			
CO2	Abl	le to i	nterp	ret a g	given	data	for di	rawing	g infei	rence,	foreca	sting	etc.				
CO3		le to s ming			y emp	oloy v	variou	is mat	hemat	tical to	ools to	devel	op a ma	achine			
CO4	Abl	le to u	inder	stand	the b	asic s	structi	ire an	d app	licatio	ns of I	Neural	l Netwo	orks.			
Mapping o Outcomes		ourse	Outc	omes	(CO	s) to	Prog	ram (Outco	mes (POs)&	k Proş	gram S	pecific			
COs	РО 1	PO 2	PO 3	РО 4	РО 5	РО 6	PO 7	PO 8	PO 9	PO 10	PO11	PO 12	PSO1	PSO2	PSO3		
CO1	3	3	1	1	1	-	-	-	1	-	3	2	3	1	1		
CO2	3	2	3	3	3	-	-	-	1	-	-	2	3	1	-		
CO3	3	2	1	1	2	-	-	-	2	-	2	3	3	2	-		
CO4	3	2	1	1	1	-	-	-	3	2	3	2	3	3	1		
Average	3	2.25	1.5	1.5	1.75	-	-	-	1.75	2	2.7	2.25	3	1.75	0.5		

Cour	Course Content:								
	L (Hours/Week)T (Hours/Week)P (Hours/Week)Total Hour/We								
	0	0	4	4					
		Content & Co	mpetencies						
Unit	Content & Comp	etencies							
1			-S algorithm for findin ing data samples. Read th						
2		idate-Elimination al	nples stored ina .CSV gorithm to output a descr amples.						
3		ata set for building	king of the decision tree the decision tree and app						
4	Build an Artificial Ne test the same using ap C4	•	plementing the Back prop	agation algorithm and					
5	1 0	•	Bayesian classifier for a sa racy of the classifier, con	1 0					
6		s task. Built-in Java	be classified, use the naïv classes/API can be used all for your data set.						
7	Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/APL C5								
8	for clustering using k-	Means algorithm. C	ata stored in a .CSV file. Compare the results of the ou can add Java/Python M	se two algorithms and					

9	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. C4
10	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs. C5

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	30	
Seminar/Journal Club		
Small Group Discussion (SGD)	20	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	10	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	60	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	VIVA
Viva-voce	Practical Examination & Viva-voce
	University Examination

Mapping of Assessment with COs

Nature of Assessment	C01	CO2	CO3	CO4
VIVA	✓	✓	✓	✓
Practical Log Book/ Record Book	~	✓	~	✓
University Examination	~	✓	✓	✓
Feedback Process	1. Stu	ident's Fe	edback	

2. Course Exit Survey

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

- 1. "An Introduction to Machine Learning", by Gopinath Rebala, Ajay Ravi, Sanjay Churiwala,1st Edition, 2019, ISBN: 3030157288
- 2. "Machine Learning", by Jaime G. Carbonell, Tom M. Mitchell, Volume-1, 2014 Edition, Publisher Elsevier, ISBN 9780080510545
- 3. "Neural Networks and Learning Machines", by Simon O. Haykin, Prentice Hall India Learning Private Limited; 3 edition (2010), ISBN-10: 8131763773

			ł	acul	lty of	f Eng	ginee	ering	and 7	Fechr	nolog	у				
Name of	the De	parti	ment			N	Mechanical Engineering									
Name of	of the Program B. Tech.															
Course C	Code															
Course T	e Title							ive R	obotic	s						
Academi	c Year	•				Г	V									
Semester	•					V	/II									
Number	of Cre	dits				3										
Course P	rerequ	iisite				R	loboti	cs En	gineeı	ring ar	nd Its .	Applic	cation			
Course S	ynops	is				Т	his c	ourse	teach	es the	fund	amenta	als for	the Co	gnitive	
						R	lobots	. This	s cour	se pro	ovides	an i	ntroduct	tion abo	ut the	
						C	Cybern	etic V	view o	f Rob	ot Cog	gnition	and Pe	erceptior	i, Map	
						В	Buildin	g. Th	ie cou	rse gi	ves a	detail	ed kno	wledge	of the	
						R	andor	nized	Path	Planni	ng and	l Sim	ultaneou	is Local	ization	
						a	nd Ma	apping	g (SLA	M). A	lso pr	ovide	the deta	ailing of	Robot	
						Р	rograi	nming	g Packa	ages ar	nd Imag	ging G	eometry	/.		
Course C	Outcon	nes:														
At the end	end of the course, students will be able to:															
	Discuss about the basic principles of telerobotic															
CO1	Dis								roboti	c						
CO1 CO2	Des	cuss a	about the	the b	asic p	orinci	ples o	of tele			comm	iunica	tion fo	or netw	vorked	
	Des tele Des	cuss a cribe robot ign a	about the ic sys	the b con stems abrica	asic p cepts ate th	orinci of	ples o wireo	of tele	l wire	eless				or netw		
CO2	Des tele Des syst	cuss a cribe robot ign a	the ic sys and fat	the b con- stems abrica	asic p cepts ate th	orinci of ne sof	ples of wired	of tele l and e arch	l wire	eless re and		rface	for net			
CO2 CO3	Des tele Des syst Ana	cuss a cribe robot ign a ems o lyze t	the ic sys and fa on the he per	the b con- atems abrica e web	asic provident of the second s	orinci of le sof	ples o wireo ftware	of tele I and e arch bots co	l wire iitectu ontroll Dutco	eless re and ed thro	d inter ough th	rface e web	for net	worked		
CO2 CO3 CO4 Mapping	Des tele Des syst Ana	cuss a cribe robot ign a ems o lyze t	the ic sys and fa on the he per	the b con- atems abrica e web	asic provident of the second s	orinci of le sof	ples o wireo ftware	of tele I and e arch bots co	l wire iitectu	eless re and ed thro	d inter ough th	rface e web	for net	worked		
CO2 CO3 CO4 Mapping Outcome	d Des tele Des syst Ana g of Co es: PO	cuss a cribe robot ign a ems o lyze t urse	about the ic sysund fa on the he per Outc	the b conditions abricate formation omes	asic pasic p	orinci of le sof of mob s) to PO	ples of wirect ftware bile ro Prog	of tele 1 and e arch bots co ram (PO	l wire iitectu ontroll Dutco	eless re and ed thro mes (1	d inter ough th POs)&	rface e web z Prog PO	for net gram S	worked	robot	
CO2 CO3 CO4 Mapping Outcome COs	g of Co	cuss a cribe robot ign a ems o lyze t urse PO 2	about the ic sys and fa on the he per Outc PO 3	the b conditions abricate web formation omes	asic pasic pasic pasic pasic pasic pasic pasic pasic pasic part of the pasic p	orinci of le sof of mot s) to PO 6	ples of wirect wirect of tware of the program of th	of tele 1 and e arch bots co ram (PO 8	l wire iitectu ontroll Dutco 9	eless re and ed thro mes (1 PO 10	d inter ough th POs)&	rface e web & Pro 12	for net gram S PSO1	worked	robot	
CO2 CO3 CO4 Mapping Outcome COs CO1	g of Co es: PO 1 3	cuss a cribe robot ign a ems o lyze t urse PO 2 0	about the ic sys and fa on the he per Outc PO 3	the b conditions abricate formation omes PO 4	asic pasic pasic pasic pasic pasic pasic pasic pasic patients of the particular particular pasic	orinci of le sof of mot s) to PO 6 2	ples of wirect wirect of tware of the program of th	of tele l and e arch bots co ram (PO 8 1	wire wire iitectu ontroll Dutco	eless re and ed thro mes (1 PO 10 2	d inter ough th POs)& PO1 1	rface e web z Prog PO 12 1	for net gram S PSO1 3	worked pecific PSO2 1	robot PSO3	

Average 3.0	0 1.5	1.8	1.0	2.8	0.8	2.0	0.5	0.8	0.8	0.8	2.0	3	1	0.25	
Course Con	ntent:														
L (Hou	rs/Weel	s)		T (H	Iours/	Week)		P (Hours/	Week)		Total Hour/Week			
	3			0 0							3				
Unit		Cont	ent &	: Con	npete	ncies									
1	Und Exp Recc (C3 Vis Und Stud (C4 Ana Exp Vis Stud Und Eva (C4 Exp Mad Und Stud Und Stud Und Stud Und Stud (C4 Exp Mad Und Stud (C4 Exp Mad Und Stud (C4 Exp Mad Und Stud (C4 Exp Mad Und Stud (C4 Exp Mad Und Stud (C4 Exp Mad Und Stud (C4 Exp Mad Und Stud (C4 Exp Mad Und Stud (C4 Exp Mad Stud (C4 Exp Mad Stud (C4 Exp Mad Stud (C4 Exp Mad Stud (C4 Exp Mad Stud (C4 Exp Mad Stud (C4 Exp Mad Stud (C4 Exp Mad Stud (C4 Exp Mad Stud (C4 Exp Mad (C4 Exp Mad (C4 Exp (C4 Exp Mad (C4 Exp (C5 Soff (C4 Exp (C4 Exp (C4 Exp (C5 Soff (C4 Exp (C4 Exp (C5 Soff (C4 Exp (C4 Exp (C5 Soff (C4 Exp (C5 Soff (C5	olore c cogniz () ual Pe derstand dy pri () alyze c olore a ual Re dy alg derstand uate () olore r chine derstand dy dif uperv oly ma stering duate () t Com derstand dy tec () oly so cligen duate () oly co so cligen duate () oly so cligen duate () oly so cligen duate () oly so cligen duate () oly so cligen duate () oly so cligen duate () oly co so	nd the liffered ercept nd the nciple different gorithm nd the different ised le achine g prob the po- nputin nd the ferent ised le achine g prob	e basi ent ap impo ion (C e proc es of : ent co ation; ition ms an e chal rent a corld : e prin t type earning e lear olems erforr e cond es su nputin 4) rengt cond e cond e con	c con oproaco ortanc C4): cess o image ompu s of v (C4): d tec llenge pproa applie C5): ciple: s of 1 ning 5 (C5) nance ols (C cept co ch as ng too hs an 5): cept co	cepts chest e of c f visu e form tation isual hniqu es and aches cation s and earnin 5) algori e and C4): of soft fuzzy ols to d lim ures a	and co o moo ogniti al per nation al mo perce es for limit to obj s of v techn ng alg thms gener comp y logic solve itation	ompo leling on in rceptic, featu dels c ption visua ations ect de isual iques orithm to sol alizati puting c, neu comp ns of s gnition	nents cogni artific on in h ire ext of visu in rob il obje of visu eccogn of ma ns, inc ve clas ion ab g and ir ral net olex pr oft co n and i for rol	tion (C ial int numan tractio al pero otics a ct reco sual re n, clas nition t chine cluding ssifica ility of ts diffe ts diffe ts role bots (C	C3) ellige s and n, and ceptio und co ognitic cognitic cognitic sifica in rob learni g supe tion, 1 f macl erent of s, and us in ro ng app e in int C5)	e model nce and machin l object on (C4) mputer on (C4) tion sys tion, an otics (C ng (C5) ervised a regressi hine lea compon genetic obotics proache telligen	robotion recognic vision tems (C d track C4) and on, and arning n tents (C algorit and art s (C4) t roboti	(C4) (C4) ing nodels (4) hms ificial cs	

avetome (C5)
systems (C5)
Evaluate the performance and adaptability of robot cognitive systems (C5)
Constructing a 2D World Map (C4):
Understand the concept of world mapping in robotics (C4)
Study different techniques for constructing 2D maps using sensor data (C4)
Analyze data structures suitable for representing and storing map information
(C4)
Evaluate algorithms for map building and localization in robotic systems (C4)
Data Structure for Map Building (C4):
Understand the importance of efficient data structures in map building (C4)
Study different data structures such as grids, trees, and graphs for map
representation (C4)
Analyze the trade-offs between memory usage, computational complexity, and
map accuracy (C4)
Evaluate the performance of data structures in map building algorithms (C4)
Explanation of the Algorithm (C4):
Understand the principles and steps of the map building algorithm (C4)
Explain the underlying logic and mathematical concepts used in the algorithm
(C4)
Analyze the algorithm's complexity, efficiency, and scalability (C4)
Evaluate the algorithm's performance on different types of sensor data (C4)
An Illustration of Procedure Traverse Boundary (C4):
Understand the procedure for traversing the boundary of the environment (C4)
Study the specific steps and actions involved in the traversal process (C4)
Analyze the algorithm's performance in different boundary scenarios (C4)
Evaluate the accuracy and robustness of the boundary traversal procedure (C4)
An Illustration of Procedure Map Building (C4):
Understand the procedure for map building using sensor data (C4)
Study the specific steps and actions involved in the map building process (C4)
Analyze the algorithm's performance in different mapping scenarios (C4)
Evaluate the accuracy and completeness of the generated maps (C4)
Robot Simulation (C3):
Understand the importance of simulation in robotics (C3)
Study different simulation techniques and tools for robot testing and evaluation
(C3)
Apply simulation methods to validate and refine the map building algorithm (C3)
Analyze the simulation results and make improvements to the algorithm (C3) Execution of the Man Building Program (C3):
Execution of the Map Building Program (C3):
Understand the steps and requirements for executing the map building program on a robot (C^2)
on a robot (C3) Study the integration of concer data acquisition, processing, and man concretion
Study the integration of sensor data acquisition, processing, and map generation
(C3)
Evaluate the program's performance and accuracy in real-world robotic
scenarios (C3)
Analyze and interpret the generated maps for further analysis and decision-

	making (C3)
2	Introduction (C2):
	Understand the basic concepts and importance of robot path planning (C2)
	Study the challenges and considerations involved in planning paths for robots
	(C2)
	Recognize the role of path planning in achieving efficient and safe robot
	navigation (C2)
	Representation of the Robot's Environment (C3):
	Study different methods and data structures for representing the robot's
	environment (C3)
	Explore techniques such as occupancy grids, point clouds, or 2D/3D maps (C3)
	Understand the trade-offs between accuracy, memory usage, and computational
	complexity (C3)
	Evaluate the suitability of different representation methods for specific robotic
	applications (C3)
	Review of Configuration Spaces (C3):
	Understand the concept of configuration space in robot path planning (C3)
	Study different types of configuration spaces, such as Euclidean or C-space (C3)
	Analyze the properties and limitations of configuration spaces for robot motion
	planning (C3)
	Apply mathematical tools and algorithms to compute and analyze configuration
	spaces (C3)
	Visibility Graphs, Voronoi Diagrams, Potential Fields, and Cell Decomposition
	(C4):
	Study advanced techniques for robot path planning, including visibility graphs,
	Voronoi diagrams, potential fields, and cell decomposition (C4)
	Understand the principles and algorithms behind these methods (C4)
	Analyze the advantages and limitations of each approach in different
	environments (C4)
	Apply these techniques to plan paths for robots in complex scenarios (C4)
	Planning with Moving Obstacles (C4):
	Study methods for robot path planning in dynamic environments with moving c_{1}
	obstacles (C4) Understand the challenges and considerations of incorporating dynamic obstacle
	information (C4)
	Explore algorithms such as time-based or prediction-based planning to account
	for moving obstacles (C4)
	Analyze the performance and effectiveness of these algorithms in dynamic
	scenarios (C4)
	Probabilistic Roadmaps and Rapidly Exploring Random Trees (C5):
	Understand the principles and algorithms of probabilistic roadmaps (PRMs) and
	rapidly exploring random trees (RRTs) (C5)
	Study the advantages and limitations of these sampling-based methods (C5)
	Apply PRMs and RRTs to plan paths for robots in complex and high-
	dimensional spaces (C5)
	Evaluate the efficiency, completeness, and optimality of the generated paths
L	

	 (C5) Execution of the Quad tree-Based Path Planner Program (C3): Understand the steps and requirements for executing a quad tree-based path planner program (C3) Study the implementation and integration of the quad tree data structure (C3) Evaluate the program's performance and efficiency in path planning tasks (C3) Analyze and interpret the generated paths for further analysis and decision-making (C3)
3	Problem Definition (C2): Understand the problem of Simultaneous Localization and Mapping (SLAM) in robotics (C2) Define the goals and challenges of SLAM (C2) Identify the importance of SLAM in autonomous navigation and mapping (C2) Mathematical Basis (C3): Study the mathematical foundations and models used in SLAM (C3) Explore concepts such as probabilistic inference, Bayesian filtering, and optimization (C3) Understand the representation of uncertainty and the estimation of robot poses and landmark positions (C3) Analyze the statistical and computational methods employed in SLAM algorithms (C3) Examples: SLAM in Landmark Worlds (C4): Study specific examples and scenarios where SLAM is applied in landmark- based environments (C4) Analyze the challenges and solutions for SLAM in different types of environments (C4) Understand the data association problem and the use of landmark measurements in SLAM (C4) Evaluate the performance and accuracy of SLAM algorithms in landmark worlds (C4) Taxonomy of the SLAM Problem (C3): Explore the different classifications and taxonomies of SLAM approaches and algorithms (C3) Understand the categorization of SLAM methods based on feature-based, grid- based, or topological representations (C3) Analyze the trade-offs and advantages of different SLAM paradigms (C3) Recognize the variations and extensions of SLAM, such as online versus offline, full SLAM versus online SLAM (C3) Extended Kalman Filter (C4): Study the Extended Kalman Filter (EKF) as a popular method for SLAM estimation (C4) Understand the principles of state estimation and covariance propagation in EKF (C4) Analyze the limitations and assumptions of EKF in SLAM (C4) Apply the EKF algorithm to estimate robot poses and landmark positions in

	SLAM (C4)
	Graph-Based Optimization Techniques (C5):
	Explore graph-based optimization techniques for SLAM, such as pose graph
	optimization or factor graph optimization (C5)
	Understand the representation of SLAM problems as graphs and the use of
	optimization algorithms (C5)
	Analyze the advantages and scalability of graph-based methods in large-scale
	SLAM (C5)
	Apply graph-based optimization techniques to improve the accuracy and
	consistency of SLAM estimates (C5)
	Particle Methods (C4):
	Study particle-based methods, such as Monte Carlo Localization (MCL) or
	Particle Filters, for SLAM (C4)
	Understand the principles of particle filtering and resampling in SLAM (C4)
	Analyze the advantages and limitations of particle methods in SLAM (C4)
	Apply particle-based algorithms to estimate robot poses and landmark positions
	in SLAM (C4)
	Relation of Paradigms (C3):
	Understand the relationships and connections between different SLAM
	paradigms and methods (C3)
	Analyze the trade-offs and complementarity between filter-based, optimization-
	based, and particle-based approaches (C3)
	Recognize the strengths and weaknesses of different SLAM paradigms in
	different scenarios (C3)
4	Robot Parameter Display (C2):
	Develop a program to display and monitor various parameters of a robot, such
	as position, velocity, and sensor readings (C2)
	Implement a graphical user interface (GUI) or a command-line interface (CLI)
	to visualize and update the robot's parameters in real-time (C2)
	Utilize appropriate programming techniques to ensure accurate and efficient
	data display (C2)
1	Program for Bot Speak (C2):
	Program for Bot Speak (C2): Design a program that enables the robot to generate audible speech or voice
	Design a program that enables the robot to generate audible speech or voice
	Design a program that enables the robot to generate audible speech or voice output (C2)
	Design a program that enables the robot to generate audible speech or voice output (C2) Implement text-to-speech synthesis or pre-recorded speech playback
	Design a program that enables the robot to generate audible speech or voice output (C2) Implement text-to-speech synthesis or pre-recorded speech playback functionality in the program (C2)
	Design a program that enables the robot to generate audible speech or voice output (C2) Implement text-to-speech synthesis or pre-recorded speech playback functionality in the program (C2) Incorporate appropriate speech generation libraries or APIs to ensure natural
	Design a program that enables the robot to generate audible speech or voice output (C2) Implement text-to-speech synthesis or pre-recorded speech playback functionality in the program (C2) Incorporate appropriate speech generation libraries or APIs to ensure natural and intelligible robot speech (C2)
	Design a program that enables the robot to generate audible speech or voice output (C2) Implement text-to-speech synthesis or pre-recorded speech playback functionality in the program (C2) Incorporate appropriate speech generation libraries or APIs to ensure natural and intelligible robot speech (C2) Program for Sonar Reading Display (C3):
	Design a program that enables the robot to generate audible speech or voice output (C2) Implement text-to-speech synthesis or pre-recorded speech playback functionality in the program (C2) Incorporate appropriate speech generation libraries or APIs to ensure natural and intelligible robot speech (C2) Program for Sonar Reading Display (C3): Develop a program to read and display sensor data from a sonar sensor or
	Design a program that enables the robot to generate audible speech or voice output (C2) Implement text-to-speech synthesis or pre-recorded speech playback functionality in the program (C2) Incorporate appropriate speech generation libraries or APIs to ensure natural and intelligible robot speech (C2) Program for Sonar Reading Display (C3): Develop a program to read and display sensor data from a sonar sensor or ultrasonic range finder (C3)
	Design a program that enables the robot to generate audible speech or voice output (C2) Implement text-to-speech synthesis or pre-recorded speech playback functionality in the program (C2) Incorporate appropriate speech generation libraries or APIs to ensure natural and intelligible robot speech (C2) Program for Sonar Reading Display (C3): Develop a program to read and display sensor data from a sonar sensor or ultrasonic range finder (C3) Implement appropriate data acquisition techniques to capture and process sonar
	Design a program that enables the robot to generate audible speech or voice output (C2) Implement text-to-speech synthesis or pre-recorded speech playback functionality in the program (C2) Incorporate appropriate speech generation libraries or APIs to ensure natural and intelligible robot speech (C2) Program for Sonar Reading Display (C3): Develop a program to read and display sensor data from a sonar sensor or ultrasonic range finder (C3) Implement appropriate data acquisition techniques to capture and process sonar readings (C3)
	Design a program that enables the robot to generate audible speech or voice output (C2) Implement text-to-speech synthesis or pre-recorded speech playback functionality in the program (C2) Incorporate appropriate speech generation libraries or APIs to ensure natural and intelligible robot speech (C2) Program for Sonar Reading Display (C3): Develop a program to read and display sensor data from a sonar sensor or ultrasonic range finder (C3) Implement appropriate data acquisition techniques to capture and process sonar readings (C3) Visualize the sonar data using graphs, plots, or a user-friendly interface (C3)

pred	lefined workspace or environment (C3)
Imp	lement path planning and obstacle avoidance algorithms to enable safe and
effic	cient robot navigation (C3)
Inte	grate appropriate sensor inputs (e.g., cameras, proximity sensors) to
perc	every the environment and make navigation decisions (C3)
Prog	gram for Tele-operation (C3):
Dev	elop a program that enables remote control or tele-operation of the robot
	g a computer or a handheld device (C3)
Imp	lement communication protocols and interfaces to transmit control
-	mands and receive feedback from the robot (C3)
Ens	ure responsive and reliable tele-operation by managing latency and
com	munication issues (C3)
A C	complete Program for Autonomous Navigation (C4):
Des	ign and implement a comprehensive program for autonomous navigation of
the	robot (C4)
Inte	grate perception, localization, mapping, path planning, and control
algo	prithms to enable autonomous operation (C4)
Ũ	imize the program for efficiency and robustness in real-world environments
(C4)	
Con	sider safety measures and fail-safe mechanisms to ensure reliable
	pnomous navigation (C4)

Teaching - Learning Strategies	Contact Hours	
Lecture	26	
Practical		
Seminar/Journal Club	3	
Small Group Discussion (SGD)	3	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	10	
Case/Project Based Learning (CBL)		
Revision	3	
Others If any:		
Total Number of Contact Hours	45	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is

	optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Mapping of Assessment with COs

Nature of Assessment	C01	CO2	CO3	CO4
Assignment / Presentation	✓	✓	✓	~
Mid Semester Examination 1	~	✓	✓	✓
Mid Semester Examination 2	✓	✓	✓	~
University Examination	✓	✓	✓	✓

Feedback Process	1.	Studer
------------------	----	--------

- I. Student's Feedback
- 2. Course Exit Survey

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

5. Course LA	the bulvey will be taken at the end of semester.
References:	(List of reference books)
	 i) Patnaik, Srikanta, "Robot Cognition and Navigation - An Experiment with Mobile Robots", Springer Verlag Berlin and Heidelberg, 2007.
	 ii) Howie Choset, Kevin Lynch Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki, and Sebastian Thrun, "Principles of Robot Motion-Theory, Algorithms, and Implementation", MIT Press, Cambridge, 2005.
	iii) Sebastian Tharun, Wolfram Burgard, Dieter Fox, "Probabilistic Robotics", MIT Press, 2005.
	 iv) Margaret E. Jefferies and Wai-Kiang Yeap, "Robotics and Cognitive Approaches to Spatial Mapping", Springer-Verlag Berlin Heidelberg 2008.
	v) Hooman Somani,"Cognitive Robotics", CRC Press, 2015.

			I	Facul	lty of	f Eng	ginee	ring	and 7	Fechr	nolog	у				
Name of the Department					N	Mechanical Engineering										
Name of the Program					В	B. Tech.										
Course C	Code															
Course T	Title					C	Cognitive Robotics Lab									
Academi	nic Year					Г	IV									
Semester	emester					V	VII									
Number	of Cre	dits				1										
Course P	ourse Prerequisite					R	Roboti	cs En	gineer	ring ar	nd Its .	Appli	cation			
Course S	ynops	is				Т	'his L	ab co	ourse	teache	s the	funda	amentals	s for P	ractical	
						C	Cogniti	ve Ro	bots.	Lab w	ork pr	ovides	an intr	oductior	n about	
						tł	ne Cył	perneti	ic Viev	w of R	obot C	ogniti	on and I	Perceptio	on. The	
						C	ourse	gives	a prac	ctical k	nowle	dge of	f the Ra	ndomize	ed Path	
						Р	lannir	ig an	d Sir	nultan	eous	Locali	zation	and M	apping	
						(5	SLAN	I). Als	so pro	vide th	e deta	iling o	of Robo	t Progra	mming	
						Р	ackag	es and	Imagi	ing Ge	ometry	·				
Course O	Dutcon															
Course C		les:														
At the end			rse, st	uden	ts wil	l be a	able to):								
	d of the	e cour							roboti	c						
At the end	d of the Dis Des	e cour cuss a	about the	the b	oasic j cepts	orinci	ples o	of tele			comn	nunica	tion fo	or netv	vorked	
At the end CO1	d of the Dis Des tele Des	e cour cuss a scribe robot	the the ic system	the b con- stems abrica	easic p cepts ate th	orinci of	ples o wireo	of tele	l wire	eless				or netv worked		
At the end CO1 CO2 CO3	d of the Dis Des tele Des syst	e cour cuss a scribe robot sign a stems o	the the ic sys and fa	the b con- stems abrica	easic pasic pasic pasic pasic pasic pasic pathone pasic pathone pasic pasic part of the pasic pa	orinci of ne sof	ples of wired	of tele l and e arch	l wire	eless re and	d inte	rface	for net			
At the end CO1 CO2	d of the Dis Des tele Des syst	e cour cuss a scribe robot sign a stems o	the the ic sys and fa	the b con- stems abrica	easic pasic pasic pasic pasic pasic pasic pathone pasic pathone pasic pasic part of the pasic pa	orinci of ne sof	ples of wired	of tele l and e arch	l wire	eless	d inte	rface	for net			
At the end CO1 CO2 CO3	d of the Dis Des tele Des syst Ana	e cour cuss a cribe robot sign a tems o lyze t	the ic sys and fa on the he per	the b con- atems abrica e web	easic pasic pasic pasic pasic pasic pasic pasic pasic pasic part of the pasic	orinci of le sof	ples o wireo ftware	of tele l and e arch bots c	l wird nitectu ontroll	eless re and ed thro	d inte ough th	rface le web	for net	worked		
At the end CO1 CO2 CO3 CO4	d of the Dis Des tele Des syst Ana	e cour cuss a cribe robot sign a tems o lyze t	the ic sys and fa on the he per	the b con- atems abrica e web	easic pasic pasic pasic pasic pasic pasic pasic pasic pasic part of the pasic	orinci of le sof	ples o wireo ftware	of tele l and e arch bots c	l wird nitectu ontroll	eless re and ed thro	d inte ough th	rface le web	for net	worked		
At the end CO1 CO2 CO3 CO4 Mapping	d of the Dis Des tele Des syst Ana	e cour cuss a cribe robot sign a tems o lyze t	the ic sys and fa on the he per	the b con- atems abrica e web	easic pasic pasic pasic pasic pasic pasic pasic pasic pasic part of the pasic	orinci of le sof	ples o wireo ftware	of tele l and e arch bots c	l wird nitectu ontroll	eless re and ed thro	d inte ough th	rface le web	for net	worked		
At the end CO1 CO2 CO3 CO4 Mapping Outcome	d of the Dis tele Des syst Ana of Co s: PO	e cour cuss a scribe robot sign a tems o lyze t urse	about the ic sys and fa on the he per Outc	the b con stems abrica e web forma	pasic I cepts ate th ance c	orinci of le sof of mob s) to PO	ples of wirect ftware bile ro Prog	of tele 1 and e arch bots co ram (PO	l wird nitectu ontroll Dutco	eless re and ed thro mes (1	d inte ough th POs)&	rface le web & Prog	for net gram S	worked	robot	
At the end CO1 CO2 CO3 CO4 Mapping Outcome COs	d of the Dis tele Des syst Ana G of Co s: PO 1	e cour cuss a scribe robot sign a tems o lyze th urse (PO 2	about the ic sys and fa on the he per Outc PO 3	the b con stems abrica e web forma omes	asic pasic pasic pasic pasic pasic pasic pasic pasic pasic part of the part of the pasic p	orinci of le sof of mot s) to PO 6	ples of wirect wirect of tware of the program of th	of tele 1 and e arch bots co ram (PO 8	l wird nitectu ontroll Dutco 9	eless re and ed thro mes (1 PO 10	d inter ough th POs)&	rface le web & Prog PO 12	for net gram S PSO1	pecific	robot PSO3	
At the end CO1 CO2 CO3 CO4 Mapping Outcome COs CO1	d of the Dis Des tele Des syst Ana 5 of Co s: PO 1 3	e cour cuss a scribe robot sign a tems o lyze t urse 0	about the ic sys and fa on the he per Outc PO 3	the b con- stems abrica e web forma omes PO 4	asic pasic pasic pasic pasic pasic pasic pasic pasic pasic part of the part of	orinci of e sof of mot s) to PO 6 2	ples of wirect wirect ftware bile ro pile ro Prog	of tele 1 and e arch bots co ram (<u>PO</u> 8 1	l wird nitectu ontroll Dutco 9 2	eless re and ed thro mes (1 PO 10 2	d inte ough the POs)& PO1 1	rface le web & Prog PO 12 1	for net gram S PSO1 3	pecific pso2	PSO3	

Average	3.0	1.5	1.8	1.0	2.8	0.8	2.0	0.5	0.8	0.8	0.8	2.0	3	1	0.25
Course (Cont	ent:													
L (Hours	/Week	i)		T (E	Iours/	Week)	P (Hours	Week)		Tota	l Hour/	Week
0					0				2				2		
Unit			Conte	ent &	c Con	npete	encies								
1		To study in detail about the Cognition and perception. (C2)													
2		To study the different types of map building. (C2)													
3		To study how to execute the programs in robots. (C2)													
4		To analyze the various path planning techniques. (C3)													
5		To study the different programs used for robot's environment. (C2)													
6		To study the simultaneous localization and mapping based techniques. (C2)													
7		To study various robot programming packages for Display, tele-operation etc. (C2)													
8		To study and perform robot simulation. (C2)													

Teaching - Learning Strategies	Contact Hours	
Lecture		
Practical	15	
Seminar/Journal Club		
Small Group Discussion (SGD)	10	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision		
Others If any:		
Total Number of Contact Hours	30	

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	VIVA
Viva-voce	Practical Examination & Viva-voce
	University Examination

Mapping of Assessment with COs

Nature of Assessment	CO1	CO2	CO3	CO4		
VIVA	✓	 ✓ 	✓	✓		
Practical Log Book/ Record Book	✓	 ✓ 	✓	✓		
University Examination	✓	✓	✓	\checkmark		
Feedback Process	1. Student's Feedback					
	2. Course Exit Survey					

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

- 1. Patnaik, Srikanta, "Robot Cognition and Navigation An Experiment with Mobile Robots", Springer Verlag Berlin and Heidelberg, 2007.
- 2. Howie Choset, Kevin LynchSeth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki, and Sebastian Thrun, "Principles of Robot Motion-Theory, Algorithms, and Implementation", MIT Press, Cambridge, 2005.
- 3. Sebastian Tharun, Wolfram Burgard, Dieter Fox, "Probabilistic Robotics", MIT Press, 2005.
- 4. Margaret E. Jefferies and Wai-Kiang Yeap, "Robotics and Cognitive Approaches to Spatial Mapping", Springer-Verlag Berlin Heidelberg 2008.
- 5. Hooman Somani,"Cognitive Robotics", CRC Press, 2015.

Faculty of Engineering and Technology																
Name of t	he De	epart	ment			N	/lecha	nical	Engin	eering	g					
Name of the Program							B. Tech.									
Course Co	ode															
Course Ti	tle					N	Modeling and Simulation of EHV									
Academic	Year	•				Γ	V									
Semester						1	/II									
Number o	of Cre	dits				3										
Course Pr	erequ	uisite	•			I	ntrodu	uction	to El	ectric	and H	ybrid	Vehicle	es		
Course Synopsis					n v v e	This subject will help students to understand the modeling of electric vehicle performance parameters. It will also introduce students to model battery for electric vehicles and drive train characteristics. The concepts of energy management system and vehicle dynamic control systems will be explained at an introductory level.										
Course Outcomes:						5			1				J			
At the end	of the	e cou	rse, s	tuden	ts wil	l be a	able to):								
CO1	Uno	dersta	and th	e mo	deling	g of v	f vehicle performance parameters.									
CO2	Mo	del b	attery	for e	lectri	c veh	vehicles.									
CO3	Des	scribe	the c	lrive	train o	chara	aracteristics.									
CO4	Ap	ply th	e con	cepts	of en	ergy	mana	igeme	nt sys	tem.						
Mapping Outcomes		urse	Outc	omes	s (CO	s) to	Prog	ram (Outco	mes (POs)&	k Pro	gram S	pecific		
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO1	PSO2	PSO3	
CO1	3	-	1	1	3	2	3	1	2	2	1	1	3	2	-	
CO2	3	2	2	1	3	-	2	-	-	-	1	3	3	1	1	
CO3	3	2	3	2	3	1	2	1	-	-	-	2	3	1	1	
CO4	3	2	1	-	2	-	1	-	1	1	1	2	3	2	-	
Average	3.0	1.5	1.8	1.0	2.8	0.8	2.0	0.5	0.8	0.8	0.8	2.0	3	1.5	0.5	
Course (Cont	ent:	<u> </u>	I	I	I	<u> </u>		I			I	<u>I</u>	I		
L (Hours	/Week	x)		T (E	lours/	Week)	P (Hours	/Week))	Total	Hour/	Week	

3		0	0	3			
Unit	Content	& Competencies					
1	Modelling V Acceleration Define and a performance, (C4) Understand t acceleration Apply mathe acceleration Modelling th Develop a m electric scoot Consider fact rolling resista Incorporate c acceleration Validate the (C4) Modelling th Construct a r small car (C4 Consider par aerodynamic Implement th the car's acce	erstand the significance of these parameters in assessing a vehicle's leration capabilities (C4) ly mathematical equations and formulas to calculate and interpret leration performance metrics (C4) lelling the acceleration of an electric scooter (C4): elop a mathematical model that describes the acceleration behavior of an tric scooter (C4) sider factors such as motor power, vehicle weight, aerodynamics, and ng resistance in the acceleration model (C4) rporate control algorithms and motor characteristics to simulate the leration response of the electric scooter (C4) date the model against real-world test data and refine the model if necessary lelling the acceleration of a small car (C4):					
2	specification Electric Vehi Tractive Effo Understand t performance Model and ca torque, gear Consider fact the tractive e Rolling Resis Define and m Account for conditions in Calculate and consumption Aerodynamic	s to validate the accu icle Modelling (C4): ort (C4): the concept of tractiv (C4) alculate the tractive of tratio, and wheel radi tors like vehicle weight ffort calculation (C4) stance Force (C4): nodel the rolling resistance the rolling resistance and range of the ele to Drag (C4):	ght, grade resistance, and t) stance force acting on an e haracteristics, vehicle weig e model (C4) of rolling resistance on the	e in electric vehicle such as motor ire characteristics in lectric vehicle (C4) ght, and road surface e overall energy			

performance (C4)
Develop a mathematical model to estimate the aerodynamic drag force based on
vehicle speed, frontal area, and drag coefficient (C4)
Analyze the influence of aerodynamic drag on energy consumption and range of
the electric vehicle (C4)
Hill Climbing Force (C4):
Describe the hill climbing force and its role in electric vehicle performance (C4)
Model the hill climbing force taking into account the grade of the road, vehicle
weight, and drivetrain efficiency (C4)
Assess the impact of hill climbing on the energy consumption and range of the
electric vehicle (C4)
Acceleration Force (C4):
Understand the relationship between acceleration and force in electric vehicles
(C4)
Develop a model to calculate the acceleration force based on vehicle mass,
motor power, and drivetrain efficiency (C4)
Evaluate the influence of acceleration on energy consumption and range of the
electric vehicle (C4)
Total Tractive Effort (C4):
Combine the various forces, including tractive effort, rolling resistance,
aerodynamic drag, hill climbing force, and acceleration force, to determine the
total tractive effort (C4)
Analyze the total tractive effort to assess the overall performance and energy
requirements of the electric vehicle (C4)
Modelling Electric Vehicle Range (C4):
Driving Cycles (C4):
Understand the concept of driving cycles and their importance in evaluating
electric vehicle range (C4)
Analyze and model different driving cycles, such as urban, highway, or
standardized test cycles, to simulate real-world driving conditions (C4)
Use driving cycles as inputs for range calculation models (C4)
Range Modelling of Battery Electric Vehicles (C4):
Develop mathematical models to estimate the range of battery electric vehicles
based on factors like battery capacity, energy consumption, and efficiency (C4)
Consider driving conditions, terrain, and driver behavior in the range calculation
(C4)
Validate the range model using real-world data or experimental results (C4)
Constant Velocity Range Modelling (C4):
Model the range of electric vehicles operating at constant velocities (C4)
Take into account factors such as vehicle speed, energy consumption rate, and
available energy capacity (C4)
Analyze the impact of constant velocity driving on the range of the electric
vehicle (C4)
Range Modelling of Fuel Cell Vehicles (C4):
Develop range models specifically for fuel cell vehicles, considering factors
such as hydrogen consumption rate, fuel cell efficiency, and energy storage
such as nyurogen consumption rate, ruer cen entitlency, and energy storage

	capacity (C4) Incorporate driving cycles and real-world conditions in the range estimation for fuel cell vehicles (C4)
	Compare and evaluate the range performance of fuel cell vehicles with other electric vehicle types (C4)
	Range Modelling of Hybrid Electric Vehicles (C4):
	Model the range of hybrid electric vehicles that combine multiple power
	sources, such as an internal combustion engine and electric motor (C4)
	e e e e e e e e e e e e e e e e e e e
	Consider factors like fuel consumption, battery capacity, regenerative braking,
	and powertrain control strategies in the range estimation (C4)
	Assess the range performance of hybrid electric vehicles under different driving scenarios (C4)
3	Modelling and Characteristics of EV/HEV Powertrain Components (C4):
	ICE Performance Characteristics (C4):
	Understand the performance characteristics of internal combustion engines
	(ICE) used in hybrid electric vehicles (HEVs) (C4)
	Model and analyze the power, torque, and fuel consumption characteristics of
	the ICE (C4)
	Consider factors like engine speed, load, and efficiency in the performance
	modeling (C4)
	Electric Motor Performance Characteristics (C4):
	Understand the performance characteristics of electric motors used in electric
	vehicles (EVs) and HEVs (C4)
	Model and analyze the torque-speed relationship, power output, and efficiency of electric motors (C4)
	Consider factors like motor type, voltage, current, and control strategies in the performance modeling (C4)
	Battery Performance Characteristics (C4):
	Understand the performance characteristics of batteries used in EVs and HEVs
	(C4)
	Model and analyze the battery capacity, voltage, current, and energy efficiency (C4)
	Consider factors like battery chemistry, temperature, aging, and state of charge in the performance modeling (C4)
	Transmission and Drivetrain Characteristics (C4):
	Understand the characteristics and operation of transmissions and drivetrains in
	EVs and HEVs (C4)
	Model and analyze the gear ratios, power distribution, and efficiency of the
	transmission and drivetrain system (C4)
	Consider factors like gear shifting strategies, powertrain control, and
	regenerative braking in the modeling (C4)
	Regenerative Braking Characteristics (C4):
	Understand the principles and benefits of regenerative braking in EVs and
	HEVs (C4)
	Model and analyze the energy recovery during regenerative braking (C4)
	Consider factors like braking force, vehicle speed, and energy storage in the
	consider factors like staking force, vehicle speed, and energy storage in the

	regenerative broking modeling (CA)
	regenerative braking modeling (C4)
	Driving Cycles Modelling and Analysis (C4):
	Understand the concept of driving cycles and their relevance in analyzing the
	performance of EVs and HEVs (C4)
	Model and analyze different driving cycles, such as urban, highway, or
	standardized test cycles (C4)
	Consider factors like vehicle speed, acceleration, deceleration, and energy
	consumption in the driving cycle analysis (C4)
	Propulsion and Braking Analysis of Electric and Hybrid Electric Vehicles (C4):
	Model and analyze the propulsion characteristics of EVs and HEVs based on the
	combined performance of powertrain components (C4)
	Assess the energy consumption, power delivery, and efficiency of the
	propulsion system (C4)
	Model and analyze the braking characteristics, including regenerative braking,
	in EVs and HEVs (C4)
4	Analysis of Electric and Hybrid Electric Vehicles (C4):
	Develop simplified handling models for electric and hybrid electric vehicles
	(C4)
	Analyze the vehicle dynamics and handling characteristics of electric and hybrid
	vehicles (C4)
	Consider factors like vehicle weight, center of gravity, tire characteristics, and
	suspension systems in the analysis (C4)
	Energy/Power Allocation and Management (C4):
	Understand the importance of efficient energy and power management in
	electric and hybrid electric vehicles (C4)
	Develop power allocation strategies to optimize the distribution of power
	between different components (C4)
	Analyze and optimize the energy flow and power distribution in the vehicle's
	propulsion system (C4)
	Power/Energy Management Controllers (C4):
	Design and implement power and energy management controllers for electric
	and hybrid electric vehicles (C4)
	Develop control algorithms to regulate the power flow and energy usage in the
	vehicle's powertrain system (C4)
	Consider factors like vehicle speed, load, battery state of charge, and power
	demand in the controller design (C4)
	Rule-Based Control Strategies (C4):
	Implement rule-based control strategies for power and energy management in
	electric and hybrid electric vehicles (C4)
	Define a set of rules and conditions to govern the power allocation and energy
	usage based on system requirements (C4)
	Consider factors like driving conditions, battery capacity, and user preferences
	in the rule-based control strategies (C4)
	Optimization-Based Control Strategies (C4):
	Develop optimization-based control strategies (C4).
	management in electric and hybrid electric vehicles (C4)
	management in electric and hybrid electric vehicles (C4)

Formulate optimization problems to maximize energy efficiency or minimize
energy consumption in the vehicle (C4)
Utilize optimization algorithms and techniques to find optimal power allocation
and energy management solutions (C4)

Teaching - Learning Strategies	Contact Hours
Lecture	20
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	2
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	16
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessment	CO1	CO2	CO3	CO4
Assignment / Presentation	~	~	~	✓
Mid Semester Examination 1	✓	~	✓	✓
Mid Semester Examination 2	✓	✓	✓	✓
University Examination	✓	✓	~	✓

Feedback Process	1. Student's Feedback					
	2. Course Exit Survey					
Students Feedback is taken through various	steps					
1. Regular feedback through Mentor M	Ientee system.					
2. Feedback between the semester thro	ugh google forms.					
3. Course Exit Survey will be taken at	the end of semester.					
References: (List of reference books	(List of reference books)					
John Wiley & Sons L 2. Amir Khajepour, Sab Vehicles Technologie John Wiley & Sons L 3. Mehrdad Ehsani, Yim	er Fallah and Avesta Goodarzi, "Electric and Hybrid es, Modelling and Control: A Mechatronic Approach", td, 2014. hin Gao, Ali Emadi, "Modern Electric, Hybrid Il Vehicles_ Fundamentals, Theory, and Design,					

Faculty of En								Engineering and Technology									
Name of t	Name of the Department							Mechanical Engineering									
Name of t	Name of the Program						B. Tec	h.									
Course Co	ode																
Course Ti	tle					N	/lodel	ing ar	nd Sim	nulatio	on of E	EHV L	ab				
Academic	Year					Г	V										
Semester						V	/II										
Number o	of Cre	dits				1											
Course Pr	erequ	uisite				I	ntrodu	uction	to El	ectric	and H	ybrid	Vehicle	es			
Course Synopsis						n w v e	This subject will help students to understand the modeling of electric vehicle performance parameters. It will also introduce students to model battery for electric vehicles and drive train characteristics. The concepts of energy management system and vehicle dynamic control systems will be explained at an introductory level.										
Course O	utcon	nes:					<u> </u>			1			·				
At the end	of the	e cou	rse, st	tuden	ts wil	l be a	able to	D:									
CO1	Uno	dersta	ind th	e mo	deling	g of v	ehicle	e perf	orman	ice pai	ramete	ers.					
CO2	Mo	del ba	attery	for e	lectri	c veh	icles.										
CO3	Des	scribe	the c	lrive	train	chara	cteris	tics.									
CO4	App	oly th	e con	cepts	of er	nergy	mana	igeme	nt sys	tem.							
Mapping Outcomes		urse	Outc	omes	(CO	s) to	Prog	ram (Outco	mes (POs)&	& Pro	gram S	pecific			
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO1	PSO2	PSO3		
CO1	3	0	1	1	3	2	3	1	2	2	1	1	3	2	-		
CO2	3	2	2	1	3	0	2	0	0	0	1	3	3	1	1		
CO3	3	2	3	2	3	1	2	1	0	0	0	2	3	1	1		
CO4	3	2	1	0	2	0	1	0	1	1	1	2	3	2	-		
Average	3.00	1.50	1.75	1.00	2.75	0.75	2.00	0.50	0.75	0.75	0.75	2.00	3	1.5	0.5		
Course (Cont	ent:	1	1	1	1	I	1	1	1	1	1	1	1			
L (Hours	/Week	x)		T (F	Iours/	Week)	P (Hours	/Week))	Total	Hour/	Week		

0		0	2	2			
Unit	Content	& Competencies					
1	To Simulate th	ne battery electric veh	icle by using MATLAB. (C)	I, C2, C3)			
2	To Simulate the Motor performance of electric vehicle by using MATLAB. (C1, C2, C3)						
3	To study about Modeling and Characteristics of EV/HEV Power trains Components. (C1, C2, C3)						
4	To study about the acceleration performance of a car. (C1, C2, C3)						
5	To study & Analysis of Electric and Hybrid Electric Vehicles Propulsion and Braking. (C1, C2, C3)						
6	To study about energy management system of EVs. (C1, C2, C3)						
7	To study about the MATLAB & Simu-link software for EVs. (C1, C2, C3)						
8	To Study about control strategies of simulation. (C1, C2, C3)						

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	20
Seminar/Journal Club	
Small Group Discussion (SGD)	5
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	30

Formative	Summative
Multiple Choice Questions (MCQ)	VIVA
Viva-voce	Practical Examination & Viva-voce
	University Examination

Nature of Assessment	CO1	CO2	CO3	CO4		
VIVA	 ✓ 	✓	✓	 ✓ 		
Practical Log Book/ Record Book	✓	✓	 ✓ 	 ✓ 		
University Examination	✓	 ✓ 	 ✓ 	✓		
Feedback Process	1. Stu	dent's Fe	edback	1		
	2. Course Exit Survey					
Students Feedback is taken through various s1. Regular feedback through Mentor Me2. Feedback between the semester throu3. Course Exit Survey will be taken at th	entee syst gh google	e forms.				
References:						
 References: 1. James Larminie, John Lowry, "Electric Vehic 2003. 	cle Techno	ology Expl	lained", Jo	ohn Wiley & Sons Ltd,		

- 2. Amir Khajepour, Saber Fallah and Avesta Goodarzi, "Electric and Hybrid Vehicles Technologies, Modelling and Control: A Mechatronic Approach", John Wiley & Sons Ltd, 2014.
- 3. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles_ Fundamentals, Theory, and Design, Second Edition", CRC Press, 2010.

				FA	ACUL	TY OI	FENC	INEE	RING	AND	ΓECHN	IOLOG	Y				
Name	of the	e Department Com					Computer Science Engineering										
Name	of the	Prog	Program Bachelor of Technol					logy	/								
Cours	e Cod	e															
Cours	e Title)				S	Software Engineering										
Acade	emic Y	ear				Γ	V										
Semes	ster					V	/II										
Numb	er of (Credit	ts			3											
Cours	e Prer	equis	ite			N	١IL										
Cours	e Syno	opsis				Т	The air	n of th	e cour	se is to	provid	e an un	derstand	ling of th	ne worki	ng	
						k	nowle	dge of	the te	chniqu	es for e	stimati	on, desig	gn, testin	g and qu	uality	
						n	nanage	ement	of larg	ge softw	vare dev	velopm	ent proje	ects.			
Cours	e Out	comes	:														
At the	end of	f the c	ourse	studen	ts will	be ab	le to:										
CO1	Able	to de	fine sc	oftware	e engii	neering	g proc	ess and	d pract	tices, ar	nd dem	onstrate	e various	process	models		
CO2	Able	to ide	entify	differe	ent typ	es of r	isks ir	ı softw	are de	velopn	nent.						
CO3	Able	to dis	stingui	sh dif	ferent	testing	g strate	egies a	nd it's	workir	ng						
CO4	Able	to Es	timate	the qu	uality	of soft	ware p	proces	s and c	levelop	the SR	S docu	ment for	r project.			
Марр	ing of	Cour	se Out	tcome	s (CO	s) to F	Progra	ım Ou	tcome	es (POs	s) & Pr	ogram	Specific	e Outcor	nes:		
Cos	РО	PO	РО	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO	
	1	2	3	4	5	6	7	8	9	0	1	2				4	
CO1	3	2	1	2	2	-	-	-	1	-	1	1	-	1	1	-	
CO2	3	3	1	2	-	-	-	-	1	-	1	1	1	1	1	-	
CO3	3	3	1	2	2	2	-	2	1	-	1	1	1	1	1	-	
CO4	3	2	1	2	2	2	-	2	1	-	1	-	-	1	1	-	
Aver	3	1.5	1	2	1.5	1	-	1	1	-	1	0.75	0.5	1	1	-	
age																	
Cours		tent:								<u>.</u>							
L (Hours/ T (Hours/Week)			T (1	Hours	/Weel	<u>(</u>)	I	P (Hou	rs/W	eek)		Т	'otal Ho	ur/Weel	k		
							1										
Wee	ek)																

Unit	Content & Competencies
1	Introduction to Software Engineering:
	Discuss the evolving role of software, changing nature of software, and software myths. (C2:
	Comprehension)
	Explain a Generic view of process and Software engineering layered technology. (C2:
	Comprehension)
	Generalize the concept of the capability maturity model integration (CMMI),
	Discuss the following terms: process patterns, process assessment, personal and team process
	models. (C2: Comprehension)
	Explain the following Process models: The waterfall model, incremental process models,
	evolutionary process models, the unified process. (C2: Comprehension)
2	Explain the characteristics and purpose of functional and non-functional requirements. (C2:
	Comprehension)
	Analyze user requirements to identify and prioritize software features that meet user needs.
	Recall the role and significance of system requirements in software development.
	Explain the importance of well-defined interfaces for software integration and interoperability.
	(C2: Comprehension)
	Recite the purpose and objectives of Feasibility studies, requirements elicitation and analysis,
	requirements validation, requirements management in the requirements engineering process. (C1:
	Knowledge)
	Describe the following System models: Context models, behavioral models, data models, object
	models, structured methods. (C2: Comprehension)
3	Design Engineering:
	Explain the importance of design quality in software engineering. (C2: Comprehension)
	Recall the fundamental design concepts and principles in software engineering. (C1: Knowledge)
	Explain how the design model represents the structure and behavior of a software system. (C2:
	Comprehension)
	Explain software architecture and architectural design: software architecture, data design,
	architectural styles and patterns, architectural design. (C2: Comprehension)
	Recall the purpose and components of the conceptual model in the Unified Modeling Language
	(UML). (C1: Knowledge)
	Discuss following terms: basic structural modeling, class diagrams, sequence diagrams,
	collaboration diagrams, use case diagrams, component diagrams. (C2: Comprehension)
	Illustrate strategic approaches to software testing.

	Explain following testing techniques in detail: black-box and white-box testing, validation testing,
	system testing, the art of debugging. (C2: Comprehension)
4	Outline Software quality and metrics for analysis model. (C1: Knowledge)
	Explain metrics for design model, metrics for source code, metrics for testing and metrics for
	maintenance. (C2: Comprehension)
	Explain following in Risk management: Reactive Vs proactive risk strategies, software risks, risk
	identification, risk projection, risk refinement, RMMM, RMMM plan. (C2: Comprehension)
	Discuss following Quality Management Concepts: Quality concepts, software quality assurance,
	software reviews,
	Explain formal technical reviews. (C2: Comprehension)
	Describe statistical software quality assurance and software reliability. (C2: Comprehension)
	Explain the ISO 9000 quality standards. (C2: Comprehension)

Learning Strategies and Contact Hours

Learning Strategies	Contact Hours
Lecture	30
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	2
Self-Directed Learning (SDL) / Tutorial	1
Problem Based Learning (PBL)	4
Case/Project Based Learning (CBL)	2
Revision	4
Others If any:	
Total Number of Contact Hours	45

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2
Objective Structured Clinical Examination	University Examination
(OSCE)	
Objective Structured Practical Examination	Dissertation

(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Short Answer Questions (SAQ)
Problem Based Learning (PBL)	Long Answer Question (LAQ)
Journal Club	Practical Examination & Viva-voce
	Objective Structured Clinical Examination
	(OSCE)
	Objective Structured Practical Examination
	(OSPE)

Nature of Assess	ment	CO1	CO2	CO3	CO4						
Quiz		✓	✓	✓	✓						
VIVA											
Assignment / Pres	entation	✓	✓	✓	✓						
Unit test		✓	✓	✓	✓						
Clinical assessmen	nt										
Clinical/Practical	Log Book/ Record Book										
Mid Semester Exa	mination 1	✓	✓	✓	✓						
Mid Semester Exa	amination 2	✓	✓	✓	✓						
University Examin	nation	✓	✓	✓	✓						
Feedback Proces	s	1. Student's Feedback									
References:	edition, Mc Graw Hill Ir 2. Software Engineering 3. The unified modeling	 Textbooks: 1.Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, Mc Graw Hill International Edition. 2. Software Engineering- Sommerville, 7th edition, Pearson Education. 3. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education. 									
	References: 1.Software Engineering	, an Engine	eering appro	ach- James	F. Peters, Witold						

Pedrycz, John Wiley.
2. Software Engineering principles and practice- Waman S Jawadekar, The Mc
Graw-Hill Companies.
3. Fundamentals of object-oriented design using UML Meiler page-Jones:
Pearson Education

]	Faculty of Engineering and Technology					
Name of	the Department	Computer Science Engineering					
Name of	the Program	B. Tech.					
Course (Code						
Course 7	ſitle	Software Engineering Lab					
Academ	ic Year	IV					
Semester	ſ	VII					
Number	of Credits	1					
Course Prerequisite Programming for Problem Solving							
Course S	Synopsis	To have hands on experience in developing a software projec by using various software engineering principles and methods in each of the phases of software development.					
Course (Dutcomes:						
At the en	d of the course, students will	be able to:					
CO1	Able to Plan a software	engineering process life cycle.					
CO2	Able to elicit, analyze ar	nd specify software requirements.					
CO3	Able to Analyze and tran	Able to Analyze and translate a specification into a design.					
CO4	Able to Built an SRS do engineering	Able to Built an SRS documents :Realize design practically, using an appropriate software					

Mapping of Course Outcomes (COs) to Program Outcomes (POs) & Program Specific Outcomes:

PO 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO1 1	P 0 12	PSO 1	PSO 2	PSO3	PSO4
3	2	2	2	1	-	-	-	-	1	1	-	-	-	-	-
3	2	2	2	1	-	-	-	1	1	-	-	3	-	-	-
3	2	2	2	1	-	-	-	-	-	1	-	-	-	-	-
3	2	2	2	1	-	-	-	-	1	1	-	3	-	-	-
3	2	2	2	1	-	-	-	0.25	0.75	0.75		1.5	-	-	-
	1 3 3 3 3	1 2 3 2 3 2 3 2 3 2 3 2 3 2	1 2 3 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2	1 2 3 4 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2	1 2 3 4 5 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1	1 2 3 4 5 6 3 2 2 2 1 - 3 2 2 2 1 - 3 2 2 2 1 - 3 2 2 2 1 - 3 2 2 2 1 - 3 2 2 2 1 -	1 2 3 4 5 6 7 3 2 2 2 1 - - 3 2 2 2 1 - - 3 2 2 2 1 - - 3 2 2 2 1 - - 3 2 2 2 1 - - 3 2 2 2 1 - -	1 2 3 4 5 6 7 8 3 2 2 2 1 - - - 3 2 2 2 1 - - - 3 2 2 2 1 - - - 3 2 2 2 1 - - - 3 2 2 2 1 - - - 3 2 2 2 1 - - -	1 2 3 4 5 6 7 8 9 3 2 2 2 1 3 2 2 2 1 1 3 2 2 2 1 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1	1 2 3 4 5 6 7 8 9 10 3 2 2 2 1 1 3 2 2 2 1 1 1 3 2 2 2 1 1 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 1 3 2 2 2 1 1	1 2 3 4 5 6 7 8 9 10 1 3 2 2 2 1 - - - 1 1 3 2 2 2 1 - - - 1 1 3 2 2 2 1 - - 1 1 - 3 2 2 2 1 - - - 1 1 - 3 2 2 2 1 - - - 1 1 3 2 2 2 1 - - - 1 1 3 2 2 2 1 - - - 1 1	PO PO <t< td=""><td>PO PO <t< td=""><td>PO PO <th< td=""><td>PO PO <t< td=""></t<></td></th<></td></t<></td></t<>	PO PO <t< td=""><td>PO PO <th< td=""><td>PO PO <t< td=""></t<></td></th<></td></t<>	PO PO <th< td=""><td>PO PO <t< td=""></t<></td></th<>	PO PO <t< td=""></t<>

Course Content:

L (H	ours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Week			
	0	0	2	2			
Sr. No.	Content & C	Competencies					

1	Draft a project plan for any Project. (C1: Knowledge)
2	Development of SRS document. (C1: Knowledge)
3	To draw different levels of DFD. (C1: Knowledge)
4	To draw an ER diagram (C1: Knowledge)
5	To draw a use case diagram. (C1: Knowledge)
6	To draw a sequence diagram and collaboration diagrams. (C1: Knowledge)
7	To draw a class diagram. (C1: Knowledge)
8	To draw a Gantt chart and network diagram. (C1: Knowledge)
9	To draw a structured chart. (C1: Knowledge)
10	Development of design Document. (C1: Knowledge)

Teaching - Learning Strategies	Contact Hours
Lecture	
Practical	15
Seminar/Journal Club	
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	05
Case/Project Based Learning (CBL)	
Revision	
Others If any:	
Total Number of Contact Hours	30

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Nature of Assessm	ent	CO1	CO2	CO3	CO4						
Quiz											
VIVA		✓	~	✓	✓						
Assignment / Prese	ntation										
Unit test											
Practical Log Book	/ Record Book	✓	 ✓ 	✓	✓						
Mid-Semester Exar	mination 1										
Mid-Semester Exar	mination 2										
University Examina	ation	✓	✓	✓	✓						
Feedback Process		с И									
References:	edition, M ii) Software F iii) The unifie	i) Software Engineering, A practitioner's Approach-Roger S. Pressman, 6th edition, Mc Graw Hill International Edition.									

SEMESTER - VIII

Course Code	Course Title
	Operation Research Techniques
Program Electi	ves Course - VI
	Design of Thermal Systems
	Advance Automotive Electronics
	Lean enterprise & Advanced Manufacturing
	Technologies
	Non-Destructive Evaluation & Testing
	Biomaterials
	Entrepreneurship & Digital Product Management
	Research Project/
	Dissertation

			I	Facul	ty of	f Eng	ginee	ring	and 7	Fechr	olog	у				
Name of the	ne De	epart	ment			Ν	Iecha	nical	Engin	eering	ç					
Name of the	Name of the Program							B. Tech.								
Course Co																
Course Ti	tle					C)perat	ion R	esearc	h Tec	hniqu	es				
Academic	Year	•				Г	V									
Semester						V	'III									
Number o	f Cre	dits				3										
Course Pr	erequ	uisite	:			Ir	ndusti	rial Er	nginee	ring						
Course Synopsis						th ki se F ei m st	Operation research is having many powerful tools to optimize the real-life problems. The study of this subject will give knowledge to the students regarding transportation and inventory related problems. This also describes the method of sequencing of jobs through different number of machines. Focus is also given to most common problems of waiting of either job/machines/peoples. Emphasis is given to decision models and replacement problems. So, the study of this subject will develop the capability among students to solve effectively many problems arising during their career.									
Course Ou At the end CO1	of the	e cou							various	s trans	portatio	on prob	lems.			
CO2	App	oly the	e conc	ept of	Sequ	encing	g and	Netwo	orks to	optimi	ze the	product	tion			
CO3	App	oly the	e conc	ept of	inver	tory r	nodel	to ma	ximize	the pr	ofit.					
CO4		oly the ustry.	e conc	ept of	Queu	ing M	Iodels	and d	ecisior	n mode	els to fo	orecast	the den	nand in t	he	
Mapping o		urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (l	POs)&	k Prog	ram S	pecific		
Outcomes COs	PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	РО	PSO	DGGG	Dicc	
CO1	1	2	3	4	5	6	7	8	9	10	1	12	1	PSO2	PSO3	
	3	1	2	2	1	1	-	1	-	-	-	3	3	2	1	
CO2	3	2	3	3	2	1	-	-	-	1	1	3	3	2	1	
CO3	3	2	3	3	2	1	-	-	-	-	1	3	3	2	-	
CO4	3	3	3	3	3	2	-	-	1	1	-	3	3	2	-	
Average	3	2	2.75	2.75	2	1.25	0	0.25	0.25	0.5	0.5	3	3	2	0.5	

L (1	Hours/Week)	T (Hours/Week)	P (Hours/Week)	Total Hour/Weel				
	3	0	0	3				
Unit	Conten	Content & Competencies						
1	Introduction Understand Recognize management Explore var (C2) Linear Prog Learn about Apply grap Understand problems (0 Explore the Understand problems (0 Transportat Understand for solving Explore the to transport Transshipn Understand Learn about for solving Explore the to transport Transshipn Understand Learn about Apply optin problems (0 Assignmen Understand Learn about problems (0 Assignmen Understand Learn about problems (0 Apply optin problems (0 Appl	n to Operations Researce the basic concepts and the importance of optim- nt (C2) rious techniques and me gramming (C3): It the mathematical form- shical methods to solve I the simplex method an C3) e duality concept and its the two-phase simplex C3) tion Problems (C3): I the concept of transpor- t the Northwest Corner transportation problems e MODI (Modified Distri- tation problems (C3): I the concept of transshi the different approach mization techniques to f C3) the concept of assignment the different algorithm C3) mization techniques to f	principles of Operation nization and decision-n ethodologies used in Op- nulation of linear progra- linear programming pro- d its steps for solving linear pro- method for solving linear pro- method for solving linear pro- method and Vogel's A s (C3) ribution) method for fin- pment problems in Op- es for solving transship ind optimal solutions t ment problems in Opera as and methods for solving ind optimal assignment ning and Nonlinear Pro- programming and nonlinear pro- programming and non- ic programming and non- ic programming and non- problems (C2)	haking in operations perations Research amming problems (C3 oblems (C3) linear programming programming (C3) hear programming erations Research (C3) pproximation method anding optimal solutions erations Research (C3) opent problems (C3) o transshipment tions Research (C3) ving assignment ts in assignment ts in assignment oprogramming (C2): inear programming in onlinear programming ns Research (C2)				

2	Sequencing (C3): Understand the sequencing problem with N jobs and 2 machines (C3) Learn Johnson's method and its application in solving sequencing problems (C3) Apply Johnson's method to determine the optimal sequence of jobs on 2 machines (C3) Sequencing with N Jobs and 3 Machines (C3): Understand the sequencing problem with N jobs and 3 machines (C3) Learn the modified Johnson's method for solving sequencing problems with 3 machines (C3) Apply the modified Johnson's method to determine the optimal sequence of jobs on 3 machines (C3) Sequencing with M Machines (C3): Understand the sequencing problem with N jobs and 'M' machines (C3) Learn the modified Johnson's method for solving sequencing problems with 'M' machines (C3) Sequencing with M Machines (C3): Understand the sequencing problem with N jobs and 'M' machines (C3) Learn the modified Johnson's method for solving sequencing problems with 'M' machines (C3) Apply the modified Johnson's method to determine the optimal sequence of jobs on 'M' machines (C3) Network Models (C2): Understand the basic concepts of network models in Operations Research (C2) Learn about the construction of networks and their representation (C2) Explore project networks and their applications in project management (C2) Understand the concepts of CPM (Critical Path Method) and PERT (Program Evaluation and Review Technique) (C2) Apply critical path scheduling techniques to determine project timelines (C2) Learn about crashing of networks and its impact on project schedules (C2)
3	Inventory Models (C2): Understand the concept of inventory and its importance in operations management (C2) Explore the various costs associated with inventory, such as holding costs, ordering costs, and shortage costs (C2) Learn about the Economic Order Quantity (EOQ) model and its application in determining optimal order quantity (C2) Understand deterministic inventory models, which assume known demand and lead time (C2) Study production models that integrate inventory management with production planning (C2) Learn about stochastic inventory models, which consider uncertain demand and lead time (C2) Explore the concept of buffer stock and its role in mitigating demand and lead time variability (C2)
4	Queuing Models (C3): Understand the concept of queuing theory and its applications in modeling waiting lines (C3) Study Poisson arrival process, which assumes arrivals occur randomly over time

	(C3)
	Explore exponential service time distribution, which represents the time taken to
	serve each customer (C3)
	Learn about single-channel queuing models, where there is only one server (C3)
	Study multi-channel queuing models, where there are multiple parallel servers
	(C3)
	Simulation (C3):
	Understand the concept of simulation and its uses in modeling real-world
	systems (C3)
	Explore the advantages and disadvantages of simulation as a decision-making
	tool (C3)
	Learn about random number generation and its importance in generating
	random inputs for simulations (C3)
	Study Monte Carlo simulation models, which use random sampling techniques
	to analyze probabilistic systems (C3)
	Decision Models (C4):
	Introduction to decision models and their role in decision-making (C4)
	Explore game theory and its application in analyzing strategic interactions
	between players (C4)
	Study two-person zero-sum games, where one player's gain is the other player's
	loss (C4)
	Learn about graphic solution methods for solving simple games (C4)
	Understand the concept of dominance and its application in simplifying decision
	problems (C4)
	Explore algebraic solution methods for solving games (C4)
	Replacement Models (C3):
	Study replacement models for items that deteriorate over time, such as
	machinery or equipment (C3)
	Learn about replacement models when the value of money changes over time
	(C3)
	Explore replacement models for items that fail completely, such as light bulbs
	or batteries (C3)
	Understand the concepts of individual replacement and group replacement
l	policies (C3)
T	urning Strategies and Contact Hours

Teaching - Learning Strategies and Contact Hours

Teaching - Learning Strategies	Contact Hours
Lecture	26
Practical	
Seminar/Journal Club	4
Small Group Discussion (SGD)	6
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5

Case/Project Based Learning (CBL)	
Revision	4
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessme	ent	CO1	CO2	CO3	CO4	
Assignment / Presentation				✓	✓	✓
Mid Semester Examination 1				✓	✓	✓
Mid Semester Examination 2				✓	✓	✓
University Examination				✓	✓	✓
Feedback Process	1. Student's F	eedback				
		2. Course Exi	t Survey			
	s taken through various lback through Mentor N	-				
0	tween the semester thro	•	ıs.			
3. Course Exit	Survey will be taken at	the end of semes	ster.			
References: (List of reference books)						
	i) DS GUPTA ,PK HIR PUBLISHER; 2011 e					978-

References:	(List of reference books)					
	 i) DS GUPTA ,PK HIRA(2015), Operation Research, S.CHAND PUBLISHER; 2011 edition (2015)ISBN-10: 121212184 ISBN-13: 978- 1212121844, ISBN: 978-8-120- 30162-7. 					
	ii) Hamdy Taha, (2008), Operations Research-An Introduction, 8th Edition, Pearson Education, ISBN:978-8-131-71104-0.					
	iii) R. Panneerselvan (2006), Operation Research, 2nd Edition, Prentice Hall of India Pvt Ltd ISBN:978-8-120-31743-7.					
	iv) J. K. Sharma (2013), Operation Research, 5th Edition, Macmillan Publications, ISBN: 978-9-350-59336-3.					
	v) Kanti Swarup, P.K. Gupta and Manmohan Lal (2010), Operations Research, 15th Edition, S. Chand & Sons, ISBN: 978- 8-180-54771-3.					

Faculty	of Engineering and Technology
Name of the Department	Mechanical Engineering
Name of the Program	B. Tech.
Course Code	
Course Title	Design of Thermal Systems
Academic Year	IV
Semester	VIII
Number of Credits	3
Course Prerequisite	Engineering Thermodynamics, Heat and Mass Transfer
Course Synopsis	The design of thermal systems requires an integrated approach that treats thermodynamics, fluid mechanics, and heat transfer as parts of one interconnected area, in which appropriate solutions to real-life design and analysis problems can be obtained only when all these aspects are considered simultaneously (after familiarity with the set here topics is achieved in previous dedicated courses.)This approach must be implemented through open-ended problems and design project oriented teaching. Topics related to thermal systems Include fluid flow networks, heat exchanger design, design and selection of pumps, fans and compressors, heat recovery systems, psychometrics, air-conditioning systems, electronic cooling systems, fuels and combustion, solar thermal systems, and power plant design. This course is specifically designed to allay the fear of ill-defined problems by teaching the skills to model and translate a physical situation into the relevant equations. The use of equation-solving software facilitates the implementation of this focus by reducing the effort involved in solving equations and affording the opportunity for more discourse on the approach toward modelling of thermal systems. The students will learn the effect of individual component design on overall systems through parametric optimization studies. Topics common to the design of all thermal systems will be taught briefly in an interactive lecture format, but the main emphasis will be on open-ended design problems to be formulated and solved in discussion format. The course will begin with the development of skills for the modelling and parametric investigation of individual thermal system components. As proficiency is gained in these exercises, the students will develop the capability to design overall thermal systems in projects of larger scope. The methodology of translating a problem statement into design tasks and executing them will be illustrated. The understanding of thermal component and system design will be encouraged by requiring the st

		to the problem as the beginning rather than the end of a design. Discussion of the effects of changes in design conditions (flow rates, inlet temperatures, etc.) and component geometry (diameter, length, other features) on performance													
Course O	utcon	nes:				W	ill be	empł	nasizeo	1.					
At the end			rse, si	uden	ts wi	ll be a	able t	o:							
CO1	Stu	dents should be able to have knowledge of different aspects of designing of a thermal								nal					
	syst	em.													
CO2	Stu	lents	ents should be able to identify and examine a design problem associated to a thermal							nal					
	syst	em.	:m.												
CO3	Stu	dents	should	l be a	ble to	unde	rstand	basic	cs of n	nodelii	ng and tl	neir as	sociated	techniqu	ies,
CO4	Stu	lents	should	l be a	ble to	expla	in eco	onomi	c aspe	ect of o	designin	g and a	able to ap	oply diff	erent
Mapping		urse	Outc	omes	s (CO	s) to	Prog	gram	Outc	omes	(POs)	& Pro	gram S	pecific	
Outcomes		DO	DO	DO	DO	DO	DO	DO	DO	DO	DO11	DO	DCO1	DEO2	DCO2
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO11	PO 12	PSO1	PSO2	PSO3
CO1	3	1	3	2	0	2	0	0	0	0	0	2	2	3	1
CO2	3	1	3	2	2	1	2	0	0	0	0	3	1	3	3
CO3	3	3	3	3	0	1	2	0	0	1	0	3	-	3	3
CO4	3	3	1	3	2	2	2	0	0	0	0	3	-	3	2
Average	3	2	2.5	2.5	1	1.5	1.5	0	0	0.25	0	2.75	0.75	3	2.25
Course (Cont	ent:				1			1			1	•	•	
L (1	Hours	/Week	;)		T (E	lours/	Week)	Р	(Hour	s/Week)		Total	Hour/	Week
	3					0				()		3		
					(Conte	ent &	Con	peter	ncies					
Unit			Cont	ent 8	k Cor	npete	encies	5							
1		 Requirements of Engineering Design (C3): Understand the importance of engineering design in creating solutions to problems (C3) Study the requirements and constraints that guide the design process (C3) Learn about the role of creativity, innovation, and problem-solving skills in engineering design (C3) Analysis (C3): Understand the concept of analysis in engineering design, which involves breaking down a complex problem into smaller components (C3) Learn various analytical techniques and tools used in engineering design, such 													

as mathematical modeling, simulation, and numerical analysis (C3)
Study the importance of analysis in evaluating the performance, feasibility, and
optimization of design solutions (C3)
Synthesis (C3):
Understand the concept of synthesis in engineering design, which involves
combining or creating new elements or systems to meet design requirements
(C3)
Learn about synthesis techniques such as brainstorming, concept generation, and
system integration (C3)
Study the importance of synthesis in developing innovative and effective design
solutions (C3)
Selection and Optimization (C4):
Learn about the process of selecting the most suitable design alternatives from a
set of options (C4) Understand the concept of optimization, which involves maximizing or
Understand the concept of optimization, which involves maximizing or minimizing contain design criteria or objectives (C4)
minimizing certain design criteria or objectives (C4)
Study optimization techniques such as mathematical programming, evolutionary
algorithms, and heuristic methods (C4)
Characteristics of a Thermal System (C2):
Understand the fundamental principles and characteristics of thermal systems
(C2)
Study the transfer of heat and energy within thermal systems (C2)
Learn about different types of thermal systems, such as HVAC systems, power
plants, and heat exchangers (C2)
Analyze the performance, efficiency, and control of thermal systems (C2)
Formulation of the Design Problem (C2):
Understand the process of formulating the design problem, which involves
defining the objectives, constraints, and specifications of the design project (C2)
Learn about problem statement development, stakeholder analysis, and
requirement gathering techniques (C2)
Study the importance of accurately formulating the design problem to ensure the
success of the design process (C2)
Conceptual Design and Steps in the Design Process (C3):
Understand the concept of conceptual design, which involves generating and
evaluating different design concepts and solutions (C3)
Learn about the various steps involved in the design process, such as problem
identification, research, concept development, prototyping, and testing (C3)
Study the iterative nature of the design process and the importance of feedback
and iteration in refining design solutions (C3)
Computer-Aided Design (C4):
Understand the role of computer-aided design (CAD) tools in the design process
(C4)
Learn about the various CAD software and technologies used for 2D and 3D
modeling, simulation, and visualization (C4)
Study the advantages of CAD in improving design efficiency, accuracy, and
collaboration (C4)

	Material Selection (C3): Understand the importance of material selection in engineering design (C3) Study the properties and characteristics of different materials and their suitability for specific design applications (C3) Learn about material selection criteria, such as mechanical properties, cost, availability, and environmental impact (C3) Analyze the trade-offs and decision-making process involved in material selection (C3)
2	Modelling Basics (C2): Understand the importance of modelling in the design process (C2) Identify the basic features and characteristics of models (C2) Learn about different types of models, including analogue, mathematical, physical, and numerical models (C2) Mathematical Modelling (C3): Understand the general procedure for mathematical modelling in design (C3) Learn about the steps involved in developing a mathematical model, including problem formulation, assumptions, and equations (C3) Study the process of refining and validating the mathematical model (C3) Modelling Techniques (C3): Explore physical modelling techniques and the use of dimensional analysis in design (C3) Understand the concept of curve fitting and different methods for fitting curves to data (C3) Learn about exact and best fit curve fitting approaches (C3) Synthesis of Different Design Steps (C3): Understand the concept of synthesis in the design process, which involves combining and integrating different design steps (C3) Explore the initial design phase and the importance of defining design objectives and constraints (C3) Learn about commonly used design approaches and strategies (C3) Study the iterative design procedure and the role of feedback and iteration in refining design solutions (C3)
3	Economic Considerations (C3): Calculate interest using different methods, including simple interest, compound interest, continuous compounding, and effective interest rate (C3) Understand the concept of the time value of money and its implications in economic analysis (C3) Explore different types of payments, such as lump-sum payments, annuities, and installment payments (C3) Learn about bonds and stocks as financial instruments and their role in investment (C3) Understand the concepts of taxes and depreciation and their impact on the cost of an investment (C3) Perform cost comparisons and analyze the rate of return for different investment options (C3)

	Apply economic analysis techniques to thermal systems and evaluate the
	economic viability of such systems (C3)
4	Optimization (C3):
	Introduction to Optimization:
	Understand the need for optimization in engineering and design (C3)
	Familiarize with the basic concepts of optimization, including the objective
	function and constraints (C3)
	Learn how to formulate an optimization problem in mathematical terms (C3)
	Methods of Optimization:
	Explore different methods of optimization, including the calculus method,
	search method, and geometrical programming (C3)
	Understand the principles and techniques used in each method (C3)
	Apply these methods to solve optimization problems in engineering and design
	(C3)
	Practical Aspects of Optimal Design:
	Consider the choice of variables in the optimization process (C3)
	Perform sensitivity analysis to assess the impact of changes in variables on the
	optimal solution (C3)
	Understand the dependence of the optimal solution on the objective function
	(C3)
	Explore multi-objective optimization and the challenges associated with
	optimizing multiple conflicting objectives (C3)

Contact Hours	
25	
5	
5	
5	
5	
45	
	25 5 5 5 5 5

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2

Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of Assess	ment		CO1	CO2	CO3	CO4			
Quiz									
VIVA									
Assignment / Pres	sentation		 ✓ 	✓	✓	✓			
Unit test									
Practical Log Boo	ok/ Record Book								
Mid Semester Exa	amination 1		 ✓ 	 ✓ 	 ✓ 	 ✓ 			
Mid Semester Exa	amination 2		✓	 ✓ 	 ✓ 	 ✓ 			
University Exami	nation		 ✓ 	 ✓ 	 ✓ 	 ✓ 			
Feedback Proces	S	1. Student's Feedback							
		2. Course Exit Survey							
 Regular fe Feedback Course Ex 	k is taken through various edback through Mentor M between the semester throu it Survey will be taken at t	entee system. 1gh google forms. he end of semeste	r.						
References:	(List of reference books)								
	 i) Janna, William S. Desig learning, 2010. ISBN- 13: ii) Rieder, W.G. and Busb Emphasizing differential M 13: 978-0471895374. iii) Collier, Courtland A., and cost analysis. Harper of 0060413330. iv) Fox, R.L. Optimization 	978-1305076075. y, H.R. Introductory Models and Comput and William Burl L collins College Divi	v Enginee er Simula edbetter. sion, 198	ering Moo ation, Wil Engineer 8. ISBN-	delling ley, 1986 ing econo 13: 978-	. ISBN-			

1971. ISBN-13: 978-0201020786.
v) Rao, Singiresu S., and S. S. Rao. Engineering optimization: theory and
practice. John Wiley & Sons, 2009. ISBN: 978-1-119-45479-3.

			I	Facul	lty of	f Eng	Engineering and Technology										
Name of	the De	part	ment			Ν	Mechanical Engineering										
Name of	the Pr	ogra	m			В	B. Tech.										
Course C	Code																
Course T	itle					A	dvan	ced A	utomo	otive I	Electro	onics					
Academi	c Year	•				Г	V										
Semester	•					V	/III										
Number	of Cre	dits				3											
Course P	rerequ	ıisite	:			В	Basics	of El	ectron	ics an	d Eleo	ctrical	Engine	ering			
Course Outcomes: At the end of the course, students will be							carburetors, telematics, in-car entertainment systems and others. Ignition, engine, and transmission electronics are also found in trucks, motorcycles, off-road vehicles, and other internal combustion-powered machinery such as forklifts, tractors, and excavators. Related elements for control of relevant electrical systems are found on hybrid vehicles and electric cars as well.										
CO1	con						automotive components, subsystems, design cycles, and safety systems employed in today's automotive										
CO2		-	inding	g the	advan	itages	s of el	ectroi	nic inj	ection	and i	gnitio	n syster	n			
CO3	Dev	velop	and c	lesigr	n of w	varnin	ig sys	tems	and in	dicato	ors for	alertii	ng the d	lriver.			
CO4				-			comf a vel		afety,	softv	vare i	nterfa	ce, and	hardw	are in		
Mapping Outcome	•	urse	Outc	omes	(CO	s) to	Prog	ram (Dutco	mes (I	POs)&	& Prog	gram S	pecific			
COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
005						-		-		-							
CO1	3	-	2	-	2	-	-	-	-	-	-	2	3	2	-		
	3	-	2	-	2 3	- 2	-	-	-	-	-	2 2	3	2 2	-		
CO1		-		-		- 2 2	2	2	-	-					1		

Average	3	0.5	1.5	0.5	2.75	1.75	0.5	0.5	0	0	0	2	3	2	0.25
Course (Cont	ent:													
L (Hours	/Week	x)		T (F	T (Hours/Week) P (Hours/Week) Total Hour									Week
	3					0				0				3	
Unit			Cont	ent &	c Con	npete	ncies	;					1		
1		Gain syst Lea Exp Stud fuel Und Act Lea mot Und Vehi Diff Exp eng Stud Gain inte Lea redu Und	n an u ems (rn abo lore c dy the mete lerstan uators rn abo cors, a lerstan icle (C ferent lore t ine (C dy eng gratec rn abo lore t ine (C dy eng gratec rn abo	inders (C2) out the liffered function ind the s and out acound the call out acound the	stand e bas ent ty tionin vehic: e oper Contre- tuato lays (eir rol etwee agine coolin nto th ine sy chaus ons (C e conc etwee agine sy chaus ons (C	ing of ic sen pes o ng and le spe ration rol Sy rs use (C2) le in c cont stem t emis (C2) cept c issues futur	f the r nsor a f sens d sigr eed se and ystem ed in ed in control rol M f warn ntrol o (C2) ssion	role ar rrange sors en ifican nsors, purpo s (C2) autom olling op and odule m-up of accontro board ds in a	ement nploy ce of detor se of t : otive variou l close (ECM contro eleration ol eng diagr	s used red in a specifination throttle syster us com ed-loo A) and ol mec- ion, de ineerin nostics	ce of s in vel autom ic sen senso e posit ns suc poner p cont its fu hanisr etonati ng and (OBI electro	ensor hicles otive sors li rs, and tion se h as s h as s nts and rol sy nctior ns (C2 on, ar l the n D) and <u>onic s</u>	s in aut (C2) applicat ike oxy; d flow s ensors (olenoid d functi ystems (no in con 2) nd idle s neasure l its imp ystems	tions (C gen sen censors C2) s, stepp ons in a C2) ntrollin speed in s taken portance (C2)	C2) sors, (C2) per a g the n an to
2		Gain fuel Lea (C2 Exp bod Und syst Stud Lea Und	n an t syste rn abo) lore o y inje lerstat ems (dy the rn abo	indersems (Cout the lifference of the cout the cout the C2) e Robe cout fue nd the	stand C2) e feed ent ty and t e cont ert Bo tel-ait	ing of dback pes o nulti- trol m osch g	f the t carb f gase port nechai gasoli	pasic p uretor pline f fuel ir nisms ne fue ing m	syste uel in jectic and c el inje ethod	ples ar orm (FE jection on (C2 compo ction s s used	ad con BC) an n syste) nents : system in aut	npone d its r ems, in involv n conti- comoti	ems (C2 nts of a role in f ncludin ved in fu rols (C2 ive fuel s for tur	utomot uel deli g thrott uel inje 2) system	very le ction as (C2)

	Ignition Systems (C2):
	Explore the advantages of electronic ignition systems over conventional ignition
	systems (C2)
	Understand the principle of operation of electronic ignition systems (C2)
	Learn about high-energy ignition distributors and their role in the ignition
	process (C2)
	Study the simplified operational diagram for a distributorless ignition system
	(C2)
	Gain insights into electronic spark timing and control mechanisms (C2)
3	Brake Actuation Warning System (C3):
5	Understand the purpose and operation of brake actuation warning systems in
	vehicles (C3)
	Learn about the components involved in the system, such as brake sensors and
	warning indicators (C3)
	Explore the activation criteria and signals that trigger the warning system (C3) Study the integration of the brake actuation warning system with other vahiale
	Study the integration of the brake actuation warning system with other vehicle $action = action = act$
	safety systems (C3) Trafficators and Elash System (C2):
	Trafficators and Flash System (C2):
	Gain an understanding of trafficators and their role in indicating vehicle turning $\operatorname{cirred}_{C2}(C2)$
	signals (C2)
	Learn about the operation and control mechanisms of trafficators (C2)
	Explore the flash system used in modern vehicles for turn signal indication (C2)
	Understand the electrical circuitry and control signals involved in the flash
	system (C2)
	Oil Pressure Warning System (C3):
	Study the oil pressure warning system in vehicles and its importance for engine health (C3)
	Learn about the sensors, gauges, and warning indicators used in the system (C3)
	Understand the activation criteria and signals that trigger the oil pressure
	warning (C3)
	Explore the integration of the oil pressure warning system with engine control
	systems (C3)
	Engine Overheat Warning System (C3):
	Understand the engine overheat warning system and its role in preventing
	engine damage (C3)
	Learn about the temperature sensors, warning indicators, and cooling
	mechanisms involved (C3)
	Explore the activation criteria and signals that trigger the engine overheat
	warning (C3)
	Study the integration of the system with engine management systems for
	protection (C3)
	Air Pressure Warning System (C3):
	Gain an understanding of the air pressure warning system in vehicles,
	commonly used in air brake systems (C3)
	Learn about the sensors, gauges, and warning indicators used in the system (C3)
	Understand the activation criteria and signals that trigger the air pressure
L	

	: (02)
	warning (C3)
	Explore the integration of the system with air brake control systems for safety
	(C3)
	Speed Warning System (C2):
	Study the speed warning system and its role in promoting safe driving habits
	(C2)
	Learn about the speed sensors, warning indicators, and control mechanisms used
	(C2)
	Understand the activation criteria and signals that trigger the speed warning
	(C2)
	Explore the integration of the system with vehicle speed control systems (C2)
	Door Lock Indicators and Gear Neutral Indicator (C2):
	Gain an understanding of door lock indicators and gear neutral indicators in
	vehicles (C2)
	Learn about the sensors, switches, and warning indicators used (C2)
	Understand the activation criteria and signals that trigger the indicators (C2)
	Explore the integration of the indicators with vehicle control systems (C2)
	Horn Design (C2):
	Study the design principles and considerations for vehicle horns (C2)
	Learn about the different types of horns, such as permanent magnet horns and
	air/music horns (C2)
	Understand the sound production mechanisms and electrical circuitry involved
	(C2)
4	Explore the regulations and safety considerations for horn design (C2)
4	Car Radio and Stereo (C2):
	Understand the operation and features of car radio and stereo systems (C2)
	Learn about the components involved, such as the head unit, speakers, and
	antennas (C2)
	Explore the functions and controls of the radio and stereo system (C2)
	Study the integration of other audio sources, such as CD players and Bluetooth
	connectivity (C2)
	Courtesy Lamp, Time Piece, and Cigar Lamp (C2):
	Gain an understanding of courtesy lamps, time pieces, and cigar lamps in
	vehicles (C2)
	Learn about their location and function within the vehicle interior (C2)
	Explore the electrical circuitry and control mechanisms involved (C2)
	Understand their integration with other interior lighting systems (C2)
	Car Fan (C2):
	Study the car fan system and its role in providing ventilation and cooling (C2)
	Learn about the different types of car fans, such as radiator fans and cabin fans
	(C2)
	Understand the electrical circuitry and control mechanisms involved (C2)
	Explore the integration of the fan system with vehicle cooling systems (C2)
	Windshield Wiper and Window Washer (C2):
	Gain an understanding of the windshield wiper and window washer systems in
	vehicles (C2)

Learn about the wiper motor, blades, washer fluid reservoir, and controls (C2) Explore the electrical circuitry and control machanisms involved (C2)
Explore the electrical circuitry and control mechanisms involved (C2) Study the integration of these systems with vehicle sofety and visibility features
Study the integration of these systems with vehicle safety and visibility features
(C2) Instrument Wiring System and Electromagnetic Interference Suppression (C3):
Instrument Wiring System and Electromagnetic Interference Suppression (C3): Understand the wiring system for vahiala instruments and gauges (C3)
Understand the wiring system for vehicle instruments and gauges (C3)
Learn about the electrical connections, harnesses, and grounding methods (C3) Study the techniques used to suppress electromegnetic interference $(C2)$
Study the techniques used to suppress electromagnetic interference (C3)
Explore the regulations and standards related to instrument wiring and EMC (C3)
Wiring Circuits for Instruments and Electronic Instruments (C3):
Gain an understanding of the wiring circuits used for vehicle instruments (C3) Learn about the connections, sensors, and control modules involved $(C3)$
Learn about the connections, sensors, and control modules involved (C3)
Study the integration of electronic instruments, such as digital displays and touchscreen interfaces (C3)
Explore the programming and communication protocols used in electronic
instruments (C3)
Dashboard Illumination (C2):
Study the illumination system for the vehicle dashboard (C2)
Learn about the lighting sources, dimming controls, and color schemes (C2)
Understand the electrical circuitry and control mechanisms involved (C2)
Explore the integration of the dashboard illumination with other vehicle systems
(C2)
Seats, Mirrors, and Sunroofs (C2):
Gain an understanding of the electrical controls and adjustments for seats,
mirrors, and sunroofs in vehicles (C2)
Learn about the motors, switches, and memory functions involved (C2)
Explore the integration of these systems with driver comfort and convenience
(C2)
Central Locking and Electronic Windows (C2):
Study the central locking system and electronic window controls in vehicles
(C2)
Learn about the actuators, switches, and control modules involved (C2)
Understand the integration of these systems with security and convenience
features (C2)
Cruise Control (C2):
Gain an understanding of the cruise control system and its role in maintaining a
set speed (C2)
Learn about the sensors, controls, and actuation mechanisms involved (C2)
Explore the integration of cruise control with vehicle speed sensors and engine management systems (C^2)
management systems (C2)
In-Car Multimedia (C2): Study the multimedia systems in vahiales, such as infetoimment displays and
Study the multimedia systems in vehicles, such as infotainment displays and audio interfaces $(C2)$
audio interfaces (C2) Learn about the connectivity options, media sources, and user interfaces (C2)
Learn about the connectivity options, media sources, and user interfaces (C2) Understand the integration of multimedia systems with other vehicle systems
onderstand the integration of multimedia systems with other vehicle systems

(C2)
Security, Airbag, and Belt Tensioners (C2):
Gain an understanding of security systems, airbags, and seat belt tensioners in
vehicles (C2)
Learn about the sensors, control modules, and deployment mechanisms
involved (C2)
Explore the integration of these systems with vehicle safety features (C2)
Other Safety and Comfort Systems (C2):
Study additional safety and comfort systems in vehicles, such as parking assist,
blind-spot detection, and climate control (C2)
Learn about the sensors, controls, and actuators involved (C2)
Understand the integration of these systems with driver assistance and passenger
comfort (C2)
Advanced Comfort and Safety Systems (C2):
Gain an understanding of advanced comfort and safety systems in modern
vehicles, such as adaptive cruise control, lane-keeping assist, and automatic
emergency braking (C2)
Learn about the sensors, control algorithms, and actuators involved (C2)
Explore the integration of these systems for enhanced vehicle safety and
comfort (C2)
New Developments in Comfort and Safety (C2):
Stay updated on the latest advancements in comfort and safety systems for
vehicles (C2)
Learn about emerging technologies, such as gesture control, biometric sensing,
and augmented reality displays (C2)
Understand the potential benefits and challenges of integrating these new
systems (C2)
The System Approach to Control and Instrumentation (C3):
Understand the importance of a system approach in control and instrumentation
design for vehicles (C3)
Learn about the interactions between different vehicle systems and their impact
on control and instrumentation (C3)
Study the methods and techniques used to optimize system performance and
integration (C3)
Antilock Braking System (ABS) (C2):
Study the principles and operation of antilock braking systems in vehicles (C2) I_{corr} about the concern control algorithms, and actuators involved (C2)
Learn about the sensors, control algorithms, and actuators involved (C2)
Understand the benefits of ABS in improving vehicle stability and braking $performance (C2)$
performance (C2) Electronic Bide Microprocessor Control (C2):
Electronic Ride Microprocessor Control (C2):
Gain an understanding of electronic ride control systems in vehicles (C2) Learn about the sensors control algorithms, and actuators involved (C2)
Learn about the sensors, control algorithms, and actuators involved (C2) Explore the integration of electronic ride control for improved suspension
Explore the integration of electronic ride control for improved suspension $performance and comfort (C2)$
performance and comfort (C2)

Teaching - Learning Strategies	Contact Hours
Lecture	28
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	2
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	8
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1
Viva-voce	Mid Semester Examination 2 (Mid Term 3 is optional)
Assignments	University End Term Examination
Student Seminar	Project
Problem Based Learning (PBL)	

Nature of Assessment	CO1	CO2	CO3	CO4		
Assignment / Presentation		✓	✓	✓	✓	
Mid Semester Examination 1			✓	✓	✓	✓
Mid Semester Examination 2			✓	✓	✓	✓
University Examination			✓	✓	✓	√
Feedback Process1. Student's F						

	2. Course Exit Survey
Students Feedback	is taken through various steps
1. Regular fee	edback through Mentor Mentee system.
2. Feedback b	between the semester through google forms.
3. Course Exi	t Survey will be taken at the end of semester.
References:	(List of reference books)
	 i) Robert N. Brandy, "Automotive Computers & Digital Instrumentation", Prentice Hall Eaglewood, Cliffs, Reston Pub Co, ISBN: 0835902633 ii) Wiliam B. Ribbens- Understanding Automotive Electronics, Allied Publishers Pvt. Ltd., 5th Revised Edition, ISBN: 0750670088. iii) Tom Denton- Automobile Electrical & Electronic Systems, Allied Publishers Pvt. Ltd., 3rdEdition, 2004, ISBN: 0768014972

Name of t	the Depa	artmer	nt		Ν	Iechan	nical	Engin	eering	ŗ					
Name of t	the Prog	gram			В	B. Tech.									
Course C	ode														
Course T	itle					Lean Enterprise & Advanced Manufactur Technologies									
Academic	e Year				I	V									
Semester					V	/III									
Number o	of Credi	ts			3										
Course P	rerequis	site			Ir	ndustri	ial Er	nginee	ring, 1	Manuf	facturi	ng Pro	cesses a	nd	
					Т	echno	ology								
Course Synopsis This is a course based on lean thinking, enterprise engineering, and digital manufacturing are becomprevalent in the workplace, engineering and professionals need to be prepared to address the endistic system of technologies, decision-making and cultural components. The objective of this graduates with experience in manufacturing, endesign, or business who wish to develop their material expertise. This course is ideal for wishing smoothly and effectively to a career in the material sector and of industry.								ecoming	g more						
					pi a ai gi de ez si	rofession holistion nd cult raduate esign, of xpertison moothly	onals ic syst tural es wi or bu e. Tl y and	need t tem of comp th exp siness nis co d effec	to be p techno onents perience who v ourse ctively	repare ologies . The ce in vish to is ide	d to a s, deci objec manu devel al for	ddress th sion-ma tive of facturing op their wishin	ne enterp king pro this cou g, engin manufa ng to t	orise as cesses, urse to eering, cturing ransfer	
Course O				ii	pi a an gu du ez si sc	rofession holistic raduate esign, of xpertise moothly	onals ic syst tural es wi or bu e. Tl y and nd of	need t tem of comp th exp siness nis co d effec	to be p techno onents perience who v ourse ctively	repare ologies . The ce in vish to is ide	d to a s, deci objec manu devel al for	ddress th sion-ma tive of facturing op their wishin	ne enterp king pro this cou g, engin manufa ng to t	orise as cesses urse to eering cturing ransfer	
At the end	l of the c	ourse,			pi a au gr du ez si sc l be a	rofession holistic raduate esign, of xpertise moothly ector ar able to:	onals ic syst tural es wi or bu e. Th y and nd of	need t tem of comp th exp siness nis co d effec indust	o be p techno onents beriend who v ourse ctively ry.	Trepare ologies The ce in vish to is ide to a	d to ad s, deci objec manu: devel al for career	ddress the sion-ma tive of facturing op their wishin in the	ne enterp king pro this cou g, engin manufa ng to t	orise as cesses urse to eering cturing ransfer	
At the end CO1	l of the c	vourse,	an thin	king a	p a au g d d e s s s l be a nd, en	rofessia holisti- nd cult raduate esign, o xpertise moothly ector ar able to:	onals c syst tural es wi or bu e. TI y and nd of : se pro	need t tem of comp th exp siness nis co d effec indust	o be p techno onents perience who v ourse ctively ry. -engin	eering	d to ad s, deci objec manu: devel al for career	ddress the sion-ma tive of facturing op their wishin in the ppt.	ne enterp king pro this cou g, engin manufa ng to t manufa	brise as cesses, urse to eering, cturing ransfer	
At the end CO1 CO2	l of the c To dev To exp	ourse, velop le plain ad	an thin vanced	king a produ	l be and, en	rofessia holisti- nd cult raduate esign, o xpertise moothly ector ar able to: hterprise technic	onals ic syst tural es wi or bu e. Th y and nd of : se pro-	need t tem of comp th exp siness nis co d effec indust cess re methoo	o be p techno onents perience who v ourse ctively ry. -engin ds for c	eering different	d to ad s, deci objec manu: devel al for career conce	ddress the sion-ma tive of facturing op their wishin in the	ne enterp king pro this cou g, engin manufa ng to t manufa	brise as cesses, urse to eering, cturing ransfer	
At the end CO1 CO2 CO3	l of the c To dev To exp To Ex	ourse, velop le plain ad plain Pl	an thin vanced astic Pi	king an produ rocessi	l be a nd, en ing m	rofessia holisti- nd cult raduate esign, o xpertise moothly ector ar able to: hterprise technic ethods	onals ic syst tural es wi or bu e. Th y and nd of : se pro- ques for d	need t tem of comp th exp siness nis co d effec indust cess re methoo ifferen	o be p techno onents perience who v ourse ctively ry. -engin ds for c t appli	eering cations	d to ad s, deci objec manu: devel al for career conce nt appl s.	ddress the sion-ma tive of facturing op their wishin in the ppt.	ne enterp king pro this cou g, engin manufa ng to t manufa	orise as cesses urse to eering cturing ransfer	
At the end CO1 CO2 CO3 CO4	l of the c To dev To exp To Ex To Cla of Cour	course, velop le plain ad plain Pl assify P	an thin vanced astic Pi ress toc	king an produ rocessional produces and	l be a nd, en ing m	rofession holistic raduate esign, or xpertise moothly ector ar able to: technic ethods y it in v	onals ic syst tural es wi or bu e. Th y and nd of : se pro- ques for d variou	need t tem of comp th exj siness nis co d effec indust cess re methoo ifferen	o be p techno onents perience who v ourse ctively ry. -engin ds for c t appli neerin	eering different applie	d to ad s, deci objec manu: devel al for career conce nt appl s.	ddress the sion-ma tive of facturing op their wishin in the pt. lications	ne enterp king pro this cou g, engin manufa ng to t manufa	orise as cesses urse to eering cturing ransfer	
At the end CO1 CO2 CO3 CO4 Mapping	l of the c To dev To exp To Ex To Cla of Cour s:	velop le plain ad plain Pl assify P se Out	an thin vanced astic Pr ress too tcomes	king an produ rocession ols and s (CO)	p p a a g d d e s s s l be a nd, en action ing m l apply s) to	rofessia holisti- nd cult raduate esign, o xpertise moothly ector ar able to: hterprise technic ethods y it in v Progr	onals ic syst itural es wi or bu e. TI y and nd of : : : : : : : : : : : : : : : : : : :	need t tem of comp th exp siness nis co d effec indust cess re methoo ifferen is engi	o be p techno onents perience who v ourse ctively ry. -engin ds for c t appli neerin, mes (1	repare ologies . The ce in vish to is ide to a eering differen cations g appli POs) &	d to ad s, deci objec manu: devel al for career conce nt appl s. cation & Pro	ddress the sion-ma tive of facturing op their wishin in the pt. lications	ne enterp king pro this cou g, engin manufa ng to t manufa	orise as cesses urse to eering cturing ransfer	
At the end CO1 CO2 CO3 CO4 Mapping Outcomes	l of the c To dev To exp To Ex To Cla of Cour s: PO I 1	velop le plain ad plain Pl assify P	an thin vanced astic Pr ress too	king an produ rocession ols and s (CO	p p a a g d d e s s s l be a nd, en ing m ing m l apply s) to	rofessia holisti nd cult raduate esign, o xpertise moothly ector ar able to: hterprise technic ethods y it in v	onals ic syst itural es wi or bu e. Th y and nd of : : : : : : : : : : : : : : : : : : :	need t tem of comp th exp siness nis co d effec indust cess re methoo ifferen is engi	o be p techno onents perience who v ourse ctively ry. -engin ds for c t appli neerin mes (1	eering appli	d to ac s, deci objec manu: devel al for career conce nt appl s. cation	ddress the sion-matrix of facturing op their wishing in the spot sector of the sector	ne enterp king pro this cou g, engin manufa ng to t manufa	prise as ccesses, urse to eering, cturing ransfer cturing	

CO3			T	1			r			T	T	T	1	1			
05	3	2	2	2	2	2	2	0	0	0	0	2	1	2	-		
CO4	3	2	2	2	2	0	2	0	0	0	0	2	1	2	-		
Average	3	2	2.25	2.25	2.25	0.5	1	0.25	1	0.5	1	2	1	1	-		
Course C	Cont	ent:															
			-)		Та	r /	XX7 1-	<u> </u>	D /	· · · · · · · · · · · · · · · · · · ·	/XX7 1-)		Total	Hour/	Week		
	Hours	vveek	()		1 (1		Week)	Г (Hours	/ week)	Tota		vv eek		
	3					0				0				3			
Unit			Conte	ent &	c Con	ipete	encies	5									
1		Intro	oduct	ion &	. Jido	ka Co	oncep	ot (C1)	:								
					e con	cept o	of Jid	oka an	d its s	signifi	cance	in lea	n produ	iction			
		-	ems (£ 41. a	1	no du o			and i			-		
			rn abo			·		lean p	roauc	cuon s	ystem	and 1	ts impo	rtance n	1		
		-		0			,	as a q	ualitv	contr	ol me	thod t	hat focu	uses on			
								es imm									
						c prii	nciple	es and	benef	its of	Jidoka	a in ac	hieving	high-q	uality		
			luctio			a											
			Mass			-			ad ita	histor	i a l d	avalar	mont (71)			
			•		-		•					-	oment (
													stems (C				
													nd its in		on the		
			nufact			•											
								g (C2)					C 1				
		Gan (C2		inders	stand	ng ol	t syst	ems th	inkin	g in th	ie con	text of	f lean p	roductio	on		
		· ·	/	out th	e inte	rdene	ender	ncies a	nd int	eracti	ons be	etweer	n differe	ent			
						1		ystem									
		Exp	lore t	he ho	listic	appr	oach	of syst	tems t	hinkiı	ng in i	dentif	ying an	d elimiı	nating		
			te (C2	· ·				•									
					•			-		utes to	o the c	overall	efficie	ncy and			
			ic Ima			-		on (C2)								
				0			,	rincip	les an	d valu	les of	lean n	roducti	on (C2)			
	Understand the fundamental principles and values of lean production Learn about the core concepts of lean, such as value, value stream, the stream of the st																
		and	perfe	ction	(C2)									. 1			
		-			-						-		on (C2)				
						n pri	nciple	es con	tribut	e to w	aste re	eduction	on and J	process			
		-	roven			m Ea		nd Mu	1 (11	T							
		Drog	ductic	יו' חו	eromi			יישמ	da (W	/actal	((")).						

	I had a stand the importance of all an income duction and according to the system of
	Understand the importance of aligning production processes with customer $rands$ and mathematical $rands$ ra
	needs and preferences (C2)
	Learn about different types of waste (Muda) in manufacturing and their impact on efficiency and quality (C2)
	Explore strategies for identifying and eliminating waste in lean production (C2) Palse Concept and Palse Valse Systems (C2):
	Poka Concept and Poka-Yoke Systems (C2):
	Gain an understanding of the Poka concept and its application in lean
	production (C2)
	Learn about Poka-Yoke, also known as mistake-proofing, as a method for
	preventing errors and defects (C2)
	Study the different types and examples of Poka-Yoke systems (C2)
	Understand the implementation and benefits of Poka-Yoke in improving process
	reliability and quality (C2)
	Inspection Systems and Zone Control (C2):
	Learn about inspection systems and their role in quality control (C2)
	Understand the concept of zone control and its application in managing and
	monitoring production areas (C2)
	Study the importance of standardized work and visual management in
	inspection systems and zone control (C2)
	Explore the integration of inspection systems and zone control with Jidoka
	principles (C2)
	Types and Use of Poka-Yoke Systems (C2):
	Gain knowledge of different types of Poka-Yoke systems used in lean
	production (C2)
	Learn about the specific applications and benefits of each type of Poka-Yoke
	system (C2)
	Understand the selection criteria and considerations for implementing Poka-
	Yoke systems (C2)
	Explore case studies and examples of successful Poka-Yoke implementations
	(C2)
	Implementation of Jidoka (C2):
	Study the process of implementing Jidoka in lean production systems (C2)
	Understand the steps and considerations involved in integrating Jidoka
	principles (C2)
	Learn about the challenges and potential solutions in implementing Jidoka
	effectively (C2)
	Explore real-world examples of Jidoka implementation and its impact on
	production quality (C2)
2	Stability of Lean System & Just-In-Time Standards (C3):
	Understand the importance of stability in lean production systems (C3)
	Learn about the principles and techniques for achieving stability in production
	processes (C3)
	Study the concept of Just-In-Time (JIT) and its role in lean production (C3)
	Explore the benefits and challenges of implementing JIT standards in lean
	systems (C3)
	5S System (C3):

Learn about the 5S system and its significance in lean production (C3)
Understand the five principles of 5S: Sort, Set in Order, Shine, Standardize, and
Sustain (C3)
Study the implementation process and benefits of the 5S system in improving
workplace organization and efficiency (C3)
Explore case studies and examples of successful 5S implementations (C3)
Total Productive Maintenance (TPM) (C3):
Gain an understanding of Total Productive Maintenance and its role in lean
production (C3)
Learn about the principles and strategies for implementing TPM (C3)
Study the benefits of TPM in reducing equipment downtime and improving
overall equipment effectiveness (C3)
Explore the relationship between TPM and standardized work in lean systems
(C3) Elements of Standardized Work (C2):
Elements of Standardized Work (C3): Learn about the key elements of standardized work in learn production $(C3)$
Learn about the key elements of standardized work in lean production (C3)
Understand the importance of standardizing work processes and job instructions (C3)
Study the elements of standardized work, including work sequence, work-in-
process, and takt time (C3)
Explore strategies for developing and maintaining standardized work in lean
systems (C3)
Charts to Define Standardized Work (C3):
Gain knowledge of different types of charts used to define standardized work
(C3)
Learn about the purpose and benefits of each chart type, such as process
flowcharts, work combination charts, and standard work charts (C3)
Understand how these charts help in visualizing and communicating
standardized work processes (C3)
Explore examples and case studies of chart-based standardized work definitions
(C3)
Manpower Reduction and Overall Efficiency (C4):
Understand the relationship between manpower reduction and overall efficiency
in lean production (C4)
Learn about the strategies and techniques for optimizing manpower utilization
(C4)
Study the concept of multi-skilling and its role in reducing manpower
requirements (C4)
Explore case studies and examples of successful manpower reduction initiatives
in lean systems (C4)
Kaizen & Layouts (C4):
Gain an understanding of Kaizen, the philosophy of continuous improvement in
lean production (C4)
Learn about the principles and techniques of Kaizen, including PDCA (Plan-
Do-Check-Act) cycles (C4)
Study the importance of efficient layouts in lean systems and their impact on

	workflow and productivity (C4)
	Explore the application of Kaizen and layout optimization in achieving
	continuous improvement in lean production (C4)
	Principles of JIT (C3):
	Learn about the principles of Just-In-Time (JIT) in lean production (C3)
	Understand the concept of JIT as a demand-driven production system (C3)
	Study the principles of JIT, including Kanban, production leveling, pull
	systems, and value stream mapping (C3)
	Explore the benefits and challenges of implementing JIT in lean systems (C3)
	JIT System and Kanban (C4):
	Gain an understanding of the JIT system and its components (C4)
	Learn about Kanban, a key element of the JIT system, and its role in controlling
	production flow (C4)
	Study the rules and techniques for implementing Kanban systems (C4)
	Explore case studies and examples of successful JIT and Kanban
	implementations (C4)
	Expanded Role of Conveyance and Production Leveling (C4):
	Understand the expanded role of conveyance in lean production systems (C4)
	Learn about the techniques and strategies for optimizing material flow and
	conveyance processes (C4)
	Study the concept of production leveling and its benefits in reducing waste and
	improving efficiency (C4)
	Explore case studies and examples of effective conveyance and production
	leveling in lean systems (C4)
	Pull Systems and Value Stream Mapping (C4):
	Gain knowledge of pull systems and their importance in lean production (C4)
	Learn about the principles and techniques for implementing pull systems, such
	as Just-In-Time and Kanban (C4)
	Understand the concept of value stream mapping and its role in identifying and
	eliminating waste (C4)
	Explore the application of pull systems and value stream mapping in lean
	production environments (C4)
3	Introduction to Plastics Processing (C1):
-	Understand the basics of plastics processing and its importance in
	manufacturing (C1)
	Learn about the different processing methods used for plastics (C1)
	Study the advantages and limitations of each plastics processing method (C1)
	Explore the applications of plastics in various industries (C1)
	Injection Molding (C2):
	Learn about the injection molding process for plastics (C2)
	Understand the equipment and machinery used in injection molding (C2)
	Study the steps involved in the injection molding process, including mold
	design, material selection, and part production (C2)
	Explore the advantages and considerations of injection molding (C2)
	Compression Molding and Transfer Molding (C2):

	Gain knowledge of compression molding and transfer molding techniques for $rlastice (C2)$
	plastics (C2) Understand the differences between compression molding and injection molding
	Understand the differences between compression molding and injection molding (C2)
	Study the process steps and equipment used in compression molding and
	transfer molding (C2)
	Explore the applications and advantages of compression molding and transfer
	molding (C2)
	Extrusion, Casting, Calendaring, Machining, and Welding (C2):
	Learn about extrusion, casting, calendaring, machining, and welding methods
	for plastics processing (C2)
	Understand the principles and equipment used in each of these methods (C2)
	Study the applications and considerations for extrusion, casting, calendaring,
	machining, and welding of plastics (C2)
	Fabrication Methods and Applications of Plastics (C2):
	Gain an understanding of different fabrication methods for plastics (C2)
	Learn about techniques such as bending, forming, joining, and assembly of
	plastic components (C2)
	Study the applications of plastics in various industries, including automotive,
	packaging, electronics, and healthcare (C2)
	Explore the advantages and challenges of using plastics in different applications
	(C2) Shaan Antion in Die Cutting Operation and Cutting Forees (C2):
	Shear Action in Die Cutting Operation and Cutting Forces (C3): Understand the shear action involved in die cutting operations for plastics (C3)
	Learn about the principles and mechanics of cutting forces in die cutting (C3)
	Study the factors that affect cutting forces, such as material properties, die
	clearance, and angular clearance (C3)
	Explore techniques for optimizing die cutting operations and reducing cutting
	forces (C3)
	Press Working Operations (C3):
	Learn about various press working operations for sheet metal and plastics (C3)
	Understand the principles and techniques of blanking, piercing, forming,
	lancing, cutting-off, notching, trimming, embossing, and other press working
	operations (C3)
	Study the line sketches and terminology used in press working operations (C3)
	Explore the applications and considerations of press working operations in
	plastics processing (C3)
4	Press Tools Introduction (C1):
	Understand the importance of press tools in manufacturing processes (C1)
	Learn about the various types of presses used in industry, including hand,
	power, gap, inclinable, adjustable, horn, straight side, and pillar presses (C1)
	Study the functions and features of different types of presses (C1)
	Gain an overview of the constructional details and components of a power press $(C1)$
	(C1) Press Size and Constructional Details of a Power Press (C2):
	Understand the factors to consider when determining the appropriate press size
	Onderstand the factors to consider when determining the appropriate press size

	for a specific application (C2)
	Learn about the constructional details of a power press, including its frame, bed,
	ram, clutch, and drive mechanism (C2)
	Study the principles and mechanics of power press operation (C2)
	Explore the safety considerations and regulations associated with power press
	usage (C2)
	Press Tools and Components (C2):
	Gain knowledge of the different components of press tools, including punches,
	dies, stops, pilots, strippers, knockouts, and pressure pads (C2)
	Understand the functions and applications of each component in press tooling
	(C2)
	Study the design considerations and material selection for press tools (C2)
	Explore techniques for maintaining and servicing press tools to ensure their
	optimal performance (C2)
	Shear Action in Die Cutting Operation and Cutting Forces (C3):
	Understand the shear action involved in die cutting operations (C3)
	Learn about the principles and mechanics of cutting forces in die cutting (C3)
	Study the factors that affect cutting forces, such as punch and die clearance,
	angular clearance, and centre of pressure (C3)
	Explore techniques for optimizing die cutting operations and reducing cutting
	forces (C3)
L	

Teaching - Learning Strategies	Contact Hours	
Lecture	25	
Practical		
Seminar/Journal Club	5	
Small Group Discussion (SGD)	5	
Self-Directed Learning (SDL) / Tutorial		
Problem Based Learning (PBL)	5	
Case/Project Based Learning (CBL)		
Revision	5	
Others If any:		
Total Number of Contact Hours	45	

Assessment Methods:

Formative	Summative		
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term		

Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)

Nature of Assessm	nent			CO1	CO2	CO3	CO4
Quiz							
VIVA							
Assignment / Prese	entation			 ✓ 	✓	✓	 ✓
Unit test							
Practical Log Book	x/ Record	Book					1
Mid Semester Exam	mination	1		✓	✓	 ✓ 	✓
Mid Semester Exam	mination	2		✓	 ✓ 	 ✓ 	 ✓
University Examin	ation			 ✓ 	✓	 ✓ 	 ✓
Feedback Process	}		1. Student's Fe	edback			
			2. Course Exit	Survey			
Students Feedback	is taken t	hrough various	steps				
		ough Mentor M	-				
-		-	igh google forms.				
3. Course Exi	t Survey v	vill be taken at t	he end of semeste	r.			
References:	ces: (List of reference books)						
	i) Lean Manufacturing: Tools, Techniques, and How to Use (Resource Management) Hardcover–by William MFeld, ISB						
	978-1574442977.						
	ii)		ineering & Operation, Kataria publishers				narma &

			I	Facu	lty o	f Eng	ginee	ering	and 7	Fechi	nolog	у			
Name of t	Name of the Department						Mechanical Engineering								
Name of t	ame of the Program						B. Tec	h.							
Course Co	ode														
Course Ti	tle					N	lon-D	estruc	ctive 7	[estin]	g and I	Evalu	ation		
Academic	Year	•				Г	V								
Semester						V	/III								
Number o	of Cre	dits				3									
Course Pr	ereq	uisite	:			A	utom	ation i	n Man	ufactu	ring				
Course Sy	nops	is				e T	valuat `his in	ion an cludes	d testi under	ng me standi	thods ung the	sed in basic p	is of nor Evaluat principle ations ar	ion of w s of vari	elds. ous
Course O	utcon	nes:													
At the end	of the	e cou	rse, st	tuden	ts wil	l be a	uble to	D:							
CO1	To	To identify different welding defects through non-destructive examination/testing.													
CO2	To	To identify and use of each non-destructive testing equipment with their applications.													
CO3	To	select	the sp	ecific	: Code	e, Star	ıdard,	or Spe	cificat	tion re	lated to	each	testing r	nethod.	
CO4		ve the d in fa			and e	ssenti	ntial skills to identify strengths and weaknesses in materials								
Mapping Outcomes	:												gram S	pecific	
COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	1	1	1	1	2	3	3	3	2	1
CO2	3	1	2	3	1	1	1	1	2	1	2	2	3	2	2
CO3	3	2	2	2	2	1	2	1	2	1	2	2	3	1	2
CO4	3	2	1	1	2	2	1	2	3	2	3	3	3	2	1
Average	3 1.75 1.5 2 1.75 1				1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5	
Course	Cont	ent:	1	1	1	1	1	1	L	1	1	I	1	I	L
L (Hours	/Week	()		T (F	Iours/	Week)	P (Hours	/Week)		Total	Hour/	Week

3		0	0	3				
Unit	Content	& Competencies						
	Introduction Understand the evaluating the damage (C2) Recognize the in various into Comparison of Limitations (Compare non their purpose Evaluate the without causi Explore the w automotive, r Understand the skilled person of defects (CC) Dye Penetratt Learn about the testing or dye Understand the liquid dye to surface-break Recognize the Magnetic Pare	& Competencies to Non-Destructive ' he concept and impo- e integrity and quali e role of NDT in en- lustries (C2) with Destructive Tes C3): -destructive testing , benefits, and limita advantages of NDT, ng damage, reduced vide range of applica nanufacturing, oil an he limitations of ND nnel, equipment limitations on Test (C2): he dye penetration t e penetrant inspection he surface of a com- ting defects (C2) e advantages and limitation ticle Testing (C2): hagnetic particle test	Testing (C2): ortance of non-destructive to ty of materials and structure suring safety, reliability, and sting, Advantages, Applica with destructive testing me ations (C3) such as the ability to inspect downtime, and cost saving ations of NDT in industries and gas, and construction (C of techniques, including the itations, and the inability to est method, also known as n (C2) occdure of the test, which i ipponent and observing for i mitations of dye penetration ting method, which is used	resting (NDT) in res without causing ad cost-effectiveness tions, and ethods in terms of ect components gs (C3) a such as aerospace, (23) eir reliance on o detect certain types liquid penetrant nvolves applying a ndications of n testing (C2)				
	Magnetic Par Explore the m and near-surf Understand th	the advantages and limitations of dye penetration testing (C2) Particle Testing (C2): magnetic particle testing method, which is used to detect surface arface defects in ferromagnetic materials (C2) the principles and procedure of magnetic particle testing, involving tion of magnetic fields and magnetic particles to detect indications of						
	defects (C2) Recognize th Ultrasonic Te Learn about u	e advantages and lin esting (C3): altrasonic testing, a	nitations of magnetic partic widely used NDT method l bund waves through materia	cle testing (C2) based on the				
	through-trans equipment (C Explore the a measuring m	mission techniques, 23) pplications of ultras aterial thickness, and	asonic testing, including pu and the use of transducers onic testing in detecting in d evaluating material prope	and ultrasonic ternal defects, erties (C3)				
	detailed infor Eddy Current	mation about the size Testing (C3):	asonic testing, such as its a ze, shape, and location of d unique used for detecting su	efects (C3)				

	surface defects in conductive materials (C3)
	Understand the principles and applications of eddy current testing, which relies
	on the interaction between alternating electrical currents and magnetic fields
	(C3)
	Recognize the advantages and limitations of eddy current testing (C3)
	Radiography Testing (C3):
	Explore radiographic testing, a widely used NDT method that utilizes X-rays or
	gamma rays to inspect the internal structure of materials (C3)
	Understand the principles and procedures of radiographic testing, including the
	use of film or digital detectors to capture and analyze the transmitted radiation
	(C3)
	Recognize the advantages and limitations of radiographic testing, including its
	ability to detect both surface and internal defects (C3)
2	Liquid Penetrate Testing (C2):
	Understand the principles of liquid penetrate testing (LPT), also known as liquid
	penetrant inspection or dye penetrant testing (C2)
	Learn about the types and properties of liquid penetrants, including visible and
	fluorescent penetrants, as well as the selection of developers for enhancing
	indications (C2)
	Evaluate the advantages and limitations of different LPT methods, such as
	sensitivity, ease of application, and suitability for various materials and surface
	conditions (C2)
	Familiarize yourself with the testing procedure for LPT, including surface
	preparation, application of penetrant, removal of excess penetrant, application of
	developer, and inspection (C2)
	Understand the interpretation of test results in LPT, including the identification and such as the indication $(C2)$
	and evaluation of indications (C2)
	Magnetic Particle Testing (C3):
	Gain an understanding of the theory of magnetism and its application in
	magnetic particle testing (C3)
	Learn about the inspection materials used in magnetic particle testing, including
	ferromagnetic materials and magnetic particles (C3)
	Explore different methods of magnetization in magnetic particle testing, such as
	direct magnetization and indirect magnetization (C3)
	Understand the principles and techniques for the interpretation and evaluation of
	test indications in magnetic particle testing (C3)
	Familiarize yourself with the methods of demagnetization used to remove
	residual magnetism after testing (C3)
	Gain knowledge of the importance of controlling residual magnetism and the
	potential impact on subsequent inspections or component performance (C3)
3	Thermography (C3):
	Understand the principles of thermography, which involves the detection and
	measurement of infrared radiation emitted by objects (C3)
	Differentiate between contact and non-contact inspection methods in
	thermography (C3)
	Learn about techniques for applying liquid crystals as temperature-indicating
L	and a second sec

	materials in thermography (C3)
	Evaluate the advantages and limitations of thermography, including its non-
	destructive nature, ability to detect surface and subsurface defects, and
	limitations related to surface conditions and material properties (C3)
	Gain knowledge of infrared radiation and infrared detectors used in
	thermography, including the principles of thermal imaging and the types of
	detectors employed (C3)
	Familiarize yourself with the instrumentation and methods used in
	thermography, such as infrared cameras and image processing techniques (C3)
	Explore various applications of thermography, including defect detection in
	materials, monitoring of thermal processes, and non-destructive testing in
	industries such as aerospace, automotive, and building inspections (C3)
4	Principle, interaction of X-Ray with matter (C2):
	Understand the basic principles of X-ray generation and the interaction of X-
	rays with matter (C2)
	Learn about the various types of X-ray interactions, such as photoelectric effect,
	Compton scattering, and coherent scattering (C2)
	Explore the factors that influence the interaction of X-rays with matter,
	including energy of the X-rays, atomic number of the material, and thickness of
	the material (C2)
	Imaging, film and filmless techniques (C2):
	Gain knowledge of different imaging techniques used in X-ray imaging,
	including traditional film-based radiography and digital imaging techniques
	Understand the advantages and limitations of film-based radiography and digital
	imaging systems (C2)
	Learn about the principles and working mechanisms of filmless techniques such
	as computed radiography (CR) and digital radiography (DR) (C2)
	Types and use of filters and screens (C2):
	Understand the role of filters in X-ray imaging, including their use for beam
	quality control and patient dose reduction (C2)
	Learn about different types of filters used in X-ray systems, such as aluminum,
	copper, and molybdenum filters (C2)
	Explore the use of screens in X-ray imaging, including their role in intensifying
	the X-ray image and reducing patient exposure (C2)
	Geometric factors, Penetrameters, Exposure charts, Radiographic equivalence
	(C2):
	Understand the geometric factors that affect X-ray imaging, such as source-to-
	object distance, object-to-image distance, and object orientation (C2)
	Learn about the use of penetrameters, exposure charts, and radiographic
	equivalence in X-ray imaging for quality control and image interpretation (C2)
	Fluoroscopy, Xeroradiography, Computed Radiography, Computed
	Tomography (C2):
	Gain knowledge of fluoroscopy, including its principles and applications for
	real-time imaging and interventional procedures (C2)
	Learn about Xeroradiography, a specialized imaging technique that uses
	Learn about Actoratiography, a specialized inlaging teeninque that uses

charged particles to create X-ray images (C2)
Understand the principles of Computed Radiography (CR) and Computed
Tomography (CT), which involve the use of digital imaging and cross-sectional
imaging techniques, respectively (C2)

Teaching - Learning Strategies	Contact Hours
Lecture	30
Practical	
Seminar/Journal Club	5
Small Group Discussion (SGD)	
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	5
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	Mid Semester Examination 2
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Dissertation
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Nature of As	sessment		CO1	CO2	CO3	CO4	
Quiz							
VIVA							
Assignment /	Presentation		✓	✓	✓	✓	
Unit test							
Practical Log	Book/ Record Bo	ook					
Mid Semester	Examination 1		 ✓ 	✓	✓	✓	
Mid Semester	Examination 2		✓	✓	✓	✓	
University Ex	amination		 ✓ 	✓	✓	✓	
Feedback Pr	ocess	1. Student's	Feedback				
		2. Course Ex	xit Survey				
Students Feed	lback is taken thr	ough various st	eps				
-	ar feedback throu	-	•				
	ack between the	-					
	e Exit Survey wil		e end of sen	nester.			
References:	References: (List of reference books)						
	i) Baldev Raj, T.				ctical Non-De	structive	
	Testing", WoodH						
	ii)RaviPrakash(2 Limited;1 st edition			gTechniques",	NewAgeInterr	ationalPrivate	

			I	Facu	lty o	f eng	ginee	ring	and T	Techn	olog	у			
Name of	Ν	Mechanical Engineering													
Name of	the Pr	ograi	m			В	B. Tec	h.							
Course C	ode														
Course T	itle					B	ioma	terials	;						
Academi	c Year	•				Г	V								
Semester						V	/III								
Number	of Cre	dits				3									
Course P	rereq	uisite				N	lateri	al Eng	gineer	ing &	Techn	ology			
	A biomaterial is any matter, surface, or construct to interacts with biological systems. This course covers bas synthesis, analysis and design of biomaterials used bioengineering, including biotechnology, tissue engineeri medical imaging and clinical applications. Topics inclu interactions between bio and synthetic molecules a surfaces; design, synthesis, and processing approaches materials that control cell functions; and application of sta of-the-art biomaterial approaches to problems in tiss engineering. rse Outcomes:								s basic ed for eering, include es and nes for f state-						
CO1									tals ce	ramics	s and n	olvme	rs and it	s chemi	ral
cor									uis, ee	iunio	, and p	0191110	is und n		Jui
CO2	structure, properties and morphology.CO2Understand the various applications of biomaterials as an implant.														
CO3	Unc	lerstar	nd and	l acco	unt fo	r metl	hods f	or cate	egoriza	tion of	f biom	aterial	s.		
CO4	Apr	oly and	d acco	ount fo	or met	hods t	to cha	racteri	ze inte	raction	ns betv	veen m	naterials	and tiss	ue.
Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:															
COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	1	0	0	0	2	3	2	0	0	0	3	2	3	1
		1	1		1	İ	1						İ	1	1
CO2	3	2	3	2	2	2	3	0	0	0	0	2	1	3	3

CO4	3	2	2	3	2	2	3	0	0	0	0	2	-	3	2
Average	3	1.75	1.75	2	1.5	2	3	0.5	0	0	0	2.25	0.75	3	2.25
Course (Course Content:														
L (1	L (Hours/Week) T (Hours/Week) P (Hours/Week) Total Hour/Week											Week			
	3					0				0				3	
Unit		(Conte	ent &	c Con	ipete	ncies						1		
1		Und Lear (C1) Rec of li Req Und bioc Lear and Stuc and Gair (C2) Com bior silic Ana appl Und devi Effe Lear Und wea Stuc chal Biol Exp into Und	lerstan rn hov) ogniz fe (C uirem lerstan compa rn abc appli- dy the compa n an c) nparis npare nateri- cone ((lyze t licatic lerstan cos of rn abc lerstan cos of rn abc lerstan cos of licatic lerstan r of b ly the lenge logica lore t the b	nd the w bio e the 1) nents nd the atibili but th cation diffe overv the p als, s C3) the st ons (C nd the ioma imposing the bio ody, nd the atibili	impo and C e esse ity, m e class n (C2 erent t es (C2 iew of f Prop ohysic such a rengtl C3) e facto nplant siologie e inte e effe tterials ortance the ph sponse ologic both i e imm	cept a rials a rtance classi ntial echar sifica) ypes) f the ertie al, m s stai ns and ors the s (C3 gical craction cts of s (C3 craction cts of s (C3 craction cts of s (C3 craction cts of s (C3 craction cts of craction cts of cts of c	and de are us e of b fication requi- nical p ation of bio advar s of C echar nless d wea at inf b) Fluid ons be phys) design ogica Biom spons e extra respon ration	efinitie ed in biomation on of remer proper of bio omate atages comm com atages comm com atages com com com com com com com com com com	variou terials Bioma its and ties, a mater rials, f and li on Bio and ch titanif es of o e the s omate n bion ical flu viomat ronme ls (C2 t occu ilar an flami	is med in im aterial d crite and sta ials ba includ imitat: omate nemica um, hy differe selecti erial P nateria uid on serials ent (C): ur whe d intr nation biom	lical a provin s (C2) ria for ability ased o ling m ions o rials (al prop ydrox) ent bic on of ropert als and the d that c 3) en bion avascu aterial	ng hea bioma (C2) n their etals, o f each C3): perties yapatit omater bioma ies (C: 1 phys egrada an wit materia ilar sy ie inte s (C2)	iologica ation, co hstand als are i stems (gration,	and qua such a functions, poly erial ty mon ethylen specific for med al fluids prrosior the ntroduc C2) and	ality s on, mers, pe e, and c ical s (C3) a, and

	such as surface properties, degradation products, and host factors (C2)
	Surface Properties, Physical Properties, and Mechanical Properties of
	Biomaterials (C2):
	Study the importance of surface properties, such as roughness, chemistry, and
	topography, in influencing the interactions between biomaterials and biological
	systems (C2)
	Understand the physical properties of biomaterials, including density, porosity,
	and thermal conductivity (C2)
	Analyze the mechanical properties of biomaterials, such as strength, stiffness,
	and elasticity (C2)
	Learn how the surface, physical, and mechanical properties of biomaterials can
2	be tailored to meet specific requirements (C2)
2	Stainless Steel, Co-based Alloys, Ti and Ti-based Alloys (C3):
	Understand the properties and characteristics of stainless steel, cobalt-based allows titonium and titonium based allows (C_2)
	alloys, titanium, and titanium-based alloys (C3) Compare the mechanical, chemical, and corrosion resistance properties of these
	biomaterials (C3)
	Recognize the applications and advantages of each material in the field of
	biomedical implants (C3)
	Importance of Stress-Corrosion Cracking (C4):
	Understand the concept of stress-corrosion cracking and its significance in
	biomaterials (C4)
	Learn about the factors that contribute to stress-corrosion cracking, such as
	tensile stresses, corrosive environments, and material susceptibility (C4)
	Recognize the impact of stress-corrosion cracking on the mechanical integrity
	and reliability of biomaterials (C4)
	Host Tissue Reaction with Biomaterials (C3):
	Study the biological response of host tissues to bio-metals, including the
	immune response, inflammation, and tissue integration (C3)
	Understand the factors influencing the host tissue reaction, such as surface
	properties, chemical composition, and degradation products (C3)
	Explore the importance of biocompatibility and the design of biomaterials to minimize adverse tissue reactions (C3)
	Corrosion Behavior and Importance of Passive Films for Tissue Adhesion (C4):
	Learn about the corrosion behavior of biomaterials and the factors influencing
	their corrosion resistance (C4)
	Understand the formation and significance of passive films on the surface of
	biomaterials for tissue adhesion and biocompatibility (C4)
	Explore the techniques used to enhance the formation and stability of passive
	films on biomaterial surfaces (C4)
	Hard Tissue Replacement Implants: Orthopedic and Dental Implants (C3):
	Study the design, materials, and manufacturing processes involved in orthopedic
	implants, such as hip and knee replacements (C3)
	Learn about dental implants, including the different types, materials, and
	considerations for successful integration (C3)
	Understand the biomechanical aspects and challenges associated with hard

[
	tissue replacement implants (C3)
	Soft Tissue Replacement Implants: Percutaneous and Skin Implants, Vascular
	Implants, Heart Valve Implants (C3):
	Explore the use of percutaneous and skin implants for soft tissue replacement,
	such as breast implants or facial prosthetics (C3)
	Study the design and materials used in vascular implants, such as stents and
	grafts (C3)
	Understand the challenges and considerations in designing and using heart valve
	implants (C3)
	Tailor-Made Composite in Medium (C4):
	Learn about the concept of tailor-made composites for biomedical applications
	(C4)
	Understand the design and fabrication of composite materials with specific
	properties for soft tissue replacement (C4)
	Explore the potential applications and advantages of tailor-made composites in
	the biomedical field (C4)
3	Definition of Bioceramics (C2):
5	Understand the concept and definition of bioceramics as materials used in
	-
	biomedical applications (C2)
	Recognize the unique properties and characteristics of bioceramics that make
	them suitable for use in medical and dental implants (C2)
	Learn about the importance of biocompatibility and bioactivity in bioceramics
	(C2)
	Common Types of Bioceramics: Aluminum Oxides, Glass Ceramics, Carbons
	Explore different types of bioceramics commonly used in biomedical
	applications, such as aluminum oxides, glass ceramics, and carbon-based
	materials (C3)
	Understand the properties, advantages, and limitations of each type of
	bioceramic (C3)
	Recognize the specific applications and considerations for each type of
	bioceramic (C3)
	Bioresorbable and Bioactive Ceramics (C3):
	Learn about bioresorbable ceramics that can be absorbed by the body over time,
	such as calcium phosphates (C3)
	Understand the concept of bioactive ceramics that can bond with surrounding
	tissues and promote tissue growth, such as hydroxyapatite (C3)
	Recognize the advantages and applications of bioresorbable and bioactive
	ceramics in biomedical engineering (C3)
	Importance of Wear Resistance and Low Fracture Toughness (C3):
	Understand the significance of wear resistance in bioceramics to ensure long-
	term durability and functionality of implants (C3)
	Recognize the challenges associated with low fracture toughness in bioceramics
	and the need for appropriate design and material selection (C3)
	Learn about strategies to enhance wear resistance and fracture toughness in
	bioceramic materials (C3)

	Host Tissue Reactions: Importance of Interfacial Tissue Reaction (C3):
	Study the interaction between bioceramics and host tissues, particularly the
	interfacial tissue reaction at the ceramic/bone interface (C3)
	Understand the importance of promoting proper tissue integration and
	minimizing adverse reactions, such as inflammation or fibrous encapsulation
	(C3)
	Explore surface modification techniques and materials selection to enhance
	interfacial tissue reactions in bioceramic implants (C3)
	Composite Implant Materials: Mechanics of Property Improvement (C3):
	Learn about composite materials used in biomedical applications, including
	bioceramic composites (C3)
	Understand the principles and mechanics behind property improvement by
	incorporating different elements, such as fibers or fillers, into bioceramic
	matrices (C3)
	Recognize the advantages and challenges associated with composite implant
	materials (C3)
	Composite Theory of Fiber Reinforcement: Short and Long Fibers, Fiber Pull-
	Out (C4):
	Study the composite theory of fiber reinforcement, including the role of short
	and long fibers in improving mechanical properties (C4)
	Understand the concept of fiber pull-out and its significance in load transfer and
	toughening mechanisms in bioceramic composites (C4)
	Explore the design and fabrication considerations for effective fiber
	reinforcement in composite implant materials (C4)
	Polymers Filled with Osteogenic Fillers: Hydroxyapatite (C3):
	Learn about polymers filled with osteogenic fillers, such as hydroxyapatite, to
	promote bone regeneration and tissue integration (C3)
	Understand the advantages and applications of polymer-based composites filled
	with osteogenic fillers in orthopedic and dental implants (C3)
	Recognize the importance of host tissue reactions and biocompatibility in these
	composite implant materials (C3)
4	Polyolefins, Polyamides, Acrylic Polymers, Fluorocarbon Polymers, Silicon
	Rubbers, Acetyls (C2):
	Understand the classification of polymers into thermosets, thermoplastics, and
	elastomers (C2)
	Learn about specific polymer types such as polyolefins, polyamides, acrylic
	polymers, fluorocarbon polymers, silicon rubbers, and acetyls (C2)
	Recognize the key properties, applications, and characteristics of each polymer
	type (C2)
	Viscoelastic Behavior: Creep, Recovery, Stress Relaxation, Strain Rate
	Sensitivity (C3):
	Explore the viscoelastic behavior of polymers, including creep, recovery, stress
	relaxation, and strain rate sensitivity (C3)
	Understand the importance of molecular structure in determining the
	viscoelastic properties of polymers (C3)
	Recognize the significance of viscoelastic behavior in polymer processing,
L	recognize the significance of viscoenastic behavior in portion processing,

material performance, and durability (C3)
Importance of Molecular Structure, Surface Properties, Additive Migration,
Aging, and Environmental Stress Cracking (C3):
Learn about the influence of molecular structure on the properties and behavior
of polymers (C3)
Understand the hydrophilic and hydrophobic surface properties of polymers and
their impact on interactions with the environment (C3)
Recognize the potential migration of additives, the effects of aging, and the
susceptibility to environmental stress cracking in polymers (C3)
Physicochemical Characteristics of Biopolymers and Biodegradable Polymers
for Medical Purposes (C3):
Study the physicochemical characteristics of biopolymers, including their
origin, structure, and properties (C3)
Explore the applications and benefits of biodegradable polymers in medical
purposes, such as drug delivery systems and tissue engineering (C3)
Understand the considerations and challenges associated with the use of
biodegradable polymers in biomedical applications (C3)
Biopolymers in Controlled Release Systems and Synthetic Polymeric
Membranes (C3):
Learn about the use of biopolymers in controlled release systems, such as drug
delivery devices and implants (C3)
Understand the principles and design considerations of synthetic polymeric
membranes for various biological applications, such as filtration and separation
(C3)
Recognize the advantages and limitations of using biopolymers and synthetic
membranes in biomedical applications (C3)

Teaching - Learning Strategies and C	Contact Hours
---	---------------

Teaching - Learning Strategies	Contact Hours
Lecture	26
Practical	
Seminar/Journal Club	2
Small Group Discussion (SGD)	10
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	2
Case/Project Based Learning (CBL)	
Revision	5
Others If any:	
Total Number of Contact Hours	45

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	Mid Semester Examination 1,2, End term
Viva-voce	
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	Multiple Choice Questions (MCQ)
Seminars	Multiple Choice Questions (MCQ)
Problem Based Learning (PBL)	Short Answer Questions (SAQ)
Journal Club	Long Answer Question (LAQ)
	Practical Examination & Viva-voce
	Objective Structured Practical Examination
	(OSPE)

Mapping of Assessment with COs

CO1	CO2	CO3	CO4			
✓	✓	 ✓ 	✓			
✓	✓	 ✓ 	✓			
✓	✓	 ✓ 	✓			
✓	✓	 ✓ 	✓			
1. Student's Feedback						
2. Co	2. Course Exit Survey					
	✓ ✓ ✓ ✓ ✓ 1. Stu	 ✓ /ul>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Students Feedback is taken through various steps

- 1. Regular feedback through Mentor Mentee system.
- 2. Feedback between the semester through google forms.
- 3. Course Exit Survey will be taken at the end of semester.

References:

i) Biomaterials Science: An Introduction to Materials in Medicine, By Buddy D. Ratner, et. al. Academic Press, San Diego, 1996.

ii) Amar K. Mohanty, ManjusriMisra and Lawrence T. Drzal (2005), Natural Fibers, Biopolymers, and Bio composites, First Edition, CRC Press. ISBN: 978-0-849-31741-5.

iii) JB Park and RS Lakes (2010), Biomaterials - An Introduction, Springer. ISBN: 978-1-441-92281-6.

Faculty	of Engineering and Technology
Name of the Department	Mechanical Engineering
Name of the Program	B. Tech.
Course Code	
Course Title	Entrepreneurship and Digital Product Management
Academic Year	IV
Semester	VIII
Number of Credits	2
Course Prerequisite	NIL
Course Synopsis	This course provides students with an in-depth understanding of entrepreneurship and the principles of digital product management. It explores the process of ideation, innovation, and development of digital products, while also focusing on the key aspects of starting and managing a successful entrepreneurial venture in the digital era. Students will learn essential skills and strategies for identifying market opportunities, designing and launching digital products, and effectively managing product lifecycles.
Course Outcomes:	
At the end of the course, students w	vill be able to:

CO1	Identify and evaluate market opportunities
CO2	Develop and manage digital product strategies.
CO3	Implement effective product development and launch processes.
CO4	Analyze and optimize digital product performance.

Mapping of Course Outcomes (COs) to Program Outcomes (POs)& Program Specific Outcomes:

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	3	2	-	3	3	-	-	-	1	3	1	3	2	`1
CO2	2	3	2	2	-	2	-	-	-	1	2	3	3	2	2
CO3	2	3	2	-	-	3	-	-	-	1	1	3	3	2	2

CO4	2	3	3	2	3	2	-	-	-	1	2	3	3	2	1			
Average	2	3	2	1	1.5	2.5	-	-	-	1	2	2.5	3.0	2.0	1.5			
Course (Cont	ent:																
L (1	Hours	/Weel	x)		T (F	Iours/	Week)	P (Hours/	Week	Total Hour/Week						
	0					0				4				4				
Sr. No.		Cor	ntent	& Co	ompe	tenci	es						1					
1		Introduction to Entrepreneurship in the Digital Era (C1) Definition and significance of entrepreneurship in the digital era Exploring the impact of digital technologies on entrepreneurial of (C1)													unities			
2			Overview of Digital Product Management Principles and Practices (C1-C2) Understanding the key principles and practices of digital product management (C1) Identifying the role of product managers in digital product development (C2) Examining the importance of customer-centric approaches in digital product management (C2)															
3			Cond (C2) Evalu produ Asses	uctin ating acts (0 ssing	g mar g marł C3) and v	ket re ket tre alidat	esearc ends, ting n	ch to i	dentif etitior	y targe	et aud marke	et oppo	and cu	stomer es for di analysis	-			
4			Produ Produ beyon Agile devel User (C5) Deve	act De act lif ad (C proje opme exper	ner feedback (C4) ct Development and Management (4 weeks) (C3-C5) ct lifecycle management: from concept development to launch and d (C3) project management methodologies for efficient digital product opment (C4) experience design and usability testing for enhancing product quality opment and implementation of digital marketing strategies to drive ct success (C5)													
5			 Entrepreneurial Finance and Business Models (C2-C4) Financial planning and budgeting considerations for startups (C2) Funding options and strategies for entrepreneurial ventures (C3) Business model canvas and value proposition design for creating sustainable business models (C4) 											inable				
6			Scali	ng an	d Gro	wth S	Strate		C3-C4 ducts	4) and st	artups	s (C3)						

	Sales and marketing strategies for achieving growth and market penetration
	(C4)
	Managing teams and organizational culture to support growth and scalability
	(C4)
7	Risk Management and Legal Considerations(C2-C3)
	Identifying and mitigating risks in entrepreneurship and digital product
	management (C2)
	Understanding intellectual property rights and legal considerations for
	digital products (C3)
8	Ethical and Social Responsibility in Digital Entrepreneurship (C2)
	Addressing ethical considerations in digital product development and
	entrepreneurship (C2)
	Exploring the social impact and sustainability aspects of digital
	entrepreneurship (C2)
9	Case Studies and Industry Insights (C3-C5)
	Analyzing real-life case studies of successful digital product launches (C3)
	Guest lectures and industry insights from experienced entrepreneurs and
	product managers (C4)
	Drawing lessons and best practices from industry examples (C5)
10	Final Project and Presentation (C4-C6)
	Application of course concepts to develop and present a digital product
	business plan (C4)
	Incorporating research, analysis, and strategic thinking into the final project
	(C5)
	Demonstrating advanced expertise in developing a comprehensive and
	viable digital product business plan (C6)

Teaching-Learning Strategies	Contact Hours
Lecture	
Practical	15
Seminar/Journal Club	
Small Group Discussion (SGD)	15
Self-Directed Learning (SDL) / Tutorial	
Problem Based Learning (PBL)	15
Case/Project Based Learning (CBL)	15
Revision	
Others If any:	
Total Number of Contact Hours	60

Assessment Methods:

Formative	Summative
Multiple Choice Questions (MCQ)	
Viva-voce	Practical Examination & Viva-voce
Objective Structured Practical Examination	University Examination
(OSPE)	
Quiz	
Seminars	
Problem Based Learning (PBL)	
Journal Club	

Nature of Assess	ment		CO1	CO2	CO3	CO4
Quiz						
VIVA			✓	✓	✓	~
Assignment / Pres	sentation					
Unit test						
Practical Log Boo	ok/ Record Book		✓	✓	✓	✓
Mid-Semester Exa	amination 1					
Mid-Semester Exa	amination 2					
University Exami		✓	✓	✓	✓	
Feedback Proces	S	1. Student's Feedbac	ck			
		2. Course Exit Surve	ey			
Students Feedbac	k is taken through	various steps				
1. Regular fe	edback through the	e Mentor Mentee system	m.			
2. Feedback	between the semes	ter through google form	ns.			
3. Course Ex	it Survey will be ta	aken at the end of the s	emester.			
References:	(List of reference	e books)				
	i) "The Lean	n Startup: How Today's	s Entrepr	eneurs U	se Contin	uous
		n to Create Radically S	Successfu	l Busines	sses" by E	Eric Ries.
	ISBN-13:	978-0307887894				

ii) "Hooked: How to Build Habit-Forming Products" by Nir Eyal. ISBN-13: 978-1591847786
iii) "The Startup Owner's Manual: The Step-by-Step Guide for Building
a Great Company" by Steve Blank and Bob Dorf. ISBN-13: 978- 0984999309

9. MAPPING OF COURSE OUTCOMES, PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Sem.	Cour	Course Title	C	РО	РО	PO	PO	РО	РО	РО	PO	PO9	PO10	PO11	PO12	PSO	PSO	PSO
	se			1	2	3	4	5	6	7	8					1	2	3
	Code																	
Ι		Engineering Mathematics-I	3	3	1.75	-	-	-	-	-	-	-	-	-	1	1	-	1
Ι		Programming for Problem- Solving	2	1	1.25	0.5	1	0.5	-	-	-	0.75		0.5	0.5	1		1
Ι		Engineering Workshop	1	3.0	1.8	2.3	0.8	1.0	0.5	-	-	-	-	1.3	2.5	3.0	2.0	0.5
Ι		Design Thinking & Innovation Lab	2	2	3	2.5	0.8	1.5	2.5	-	-	-	-	2	2.5	3.0	2.0	1.5
Ι		Programming for Problem- Solving Lab	2	3.0	1.8	2.3	0.8	1.0	0.5	-	-	-	-	1.3	2.5	3.0	2.0	0.5
Ι		Engineering Workshop Lab	2	3.0	1.8	2.3	0.8	1.0	0.5	-	-	-	-	1.3	2.5	3.0	2.0	0.5
II		Engineering Mathematics-II	3	3	1.75	1	2	-	-	-	-	-	-	-	1	1	0.75	1
II		Basics of Electrical & Electronics Engineering	2	1.75	-	1	-	-	0.75	-	-	-	-	-	2	-	0.25	0.5
II		Engineering Graphics and Design	1	2	0.75	1	0.75	3	-	-	-	-	2	-	-	3.0	2.0	1
II		New Age Skills Lab	2	2	1	1	0.75	3	-	-	-	-	2	1	1	3.0	2.0	1
II		Basics of Electrical &	2	2	0.75	1	0.75	3	-	-	-	-	2	-	-	3.0	2.0	1

	Electronics Engineering Lab																
II	Engineering Graphics and Design Lab	2	2	0.75	1	0.75	3	-	-	-	-	2	-	-	3.0	2.0	1
III	Engineering Mechanics	3	3	2.75	2.25	2	1.75	0.75	0.5	0.25	-	0.25	2	-	3	2.75	2.25
III	Engineering Thermodynamics	3	3	2	2.5	2.5	1	1.5	1.5	0	0	0.25	0	2.75	0.75	3	2.25
III	Refrigeration & Air Conditioning	3	3	2.5	3	3	1.75	2	1.75	-	-	-	-	2.5	3	3	2.25
III	Automobile Engineering	3	3	2.25	2.75	2.5	1.5	1	-	-	0.5	0.5	0.5	2.25	0.75	3	2.25
III	Numerical Methods	3	3	2.25	1.75	2.25	2	1.5	-	-	-	-	2	2.75	0.75	1.25	0.5
III	Product Design for Manufacturing	3	3	1.75	1.5	2	1.75	1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5
III	Composite Materials	3	3	2.25	2.25	1.75	1	0.5	1.75	-	1	0.25	1	2.25	2.5	3	1.5
III	SEC-I (SolidWorks)	2	3	2.75	2.75	2.25	3	1	0.5	0.25	-	1	1	1	3	2.75	0.5
III	Engineering Mechanics Lab	1	3.0	2.5	2.5	2.3	1.5	-	1.3	0.5	1.3	1.0	1.8	2.3	0.25	0.25	2.25
III	Summer Internship	1	3.0	2.5	2.5	2.3	1.5	-	1.3	0.5	1.3	1.0	1.8	2.3	2	2	2.5
III	Robotics Engineering & Applications	3	3	1.75	1.75	1.75	1.25	1	-	-	-	-	-	2	2.25	2	2
III	Robotics Engineering & Applications Lab	1	3	1.75	1.75	1.75	1.25	1	-	-	-	-	-	2	2.25	2	2
III	Introduction to Hybrid and Electric Vehicles	3	3	1.5	1.75	1	2.75	0.75	2	0.5	0.75	0.75	0.75	2	3	1.75	0.5
III	Introduction to Hybrid and	1	3	1.5	1.75	1	2.75	0.75	2	0.5	0.75	0.75	0.75	2	3	1.75	0.5

	Electric Vehicles Lab																
III	Object-Oriented Programming	3	3	2.5	0.75	1	-	-	-	-	0.5	-	-	-	1	0.5	1
III	Object-Oriented Programming Lab	1	3.0	1.8	2.3	0.8	1.0	0.5	-	-	-	-	-	-	3.0	2.0	0.5
IV	Strength of Materials	3	3	2.75	2.75	2.75	1.5	-	-	-	-	-	-	2.5	3	2.75	2.75
IV	Material Engineering & Technology	3	3	2	1.75	2.5	1.75	1.5	2	-	-	0.5	-	2.25	2.75	2.75	2
IV	Manufacturing Processes	3	3	2.25	2.5	2.5	2.5	2	-	-	-	-	1	1.5	0.75	3	2.25
IV	Steam Power Generation	3	3	1.75	2.5	2.25	1.5	1.25	1.5	-	-	-	1.5	2.5	0.75	3	2.25
IV	Total Quality Management	3	3	1.25	-	1.75	-	1.75	1.75	1.75	1.75	1.75	2.5	2.75	3	1.5	0.5
IV	Production Planning & Control	3	3	-	-	-	2	2	2	2	3	2	3	3	1	1	-
IV	Mechanical Vibration	3	3	1.75	1.5	2	1.75	1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5
IV	Tool Design	3	3	2	2.5	2.25	2	-	-	-	-	-	1.25	2.5	0.75	3	2.25
IV	SEC-II (ANSYS)	2	3	2.75	2.75	2.25	3	1	0.5	0.25	-	1	1.5	1.5	3	2.75	0.5
IV	Strength of Materials Lab	1	3	3	3	3	3	0	2	0	0	0	0	2	2.5	2.75	2
IV	Material Engineering & Technology Lab	1	3	2	1.75	2.5	1.75	1.5	2	-	-	0.5	-	2.25	2.75	2.75	2
IV	Manufacturing Processes Lab	1	3	2.4	2	1.6	1.4	1	0.6	-	1	0.8	1.4	2	3	1.2	1
IV	Mobile Robots	3	3	2.25	2.5	2.5	2.5	2	-	-	-	-	1	1.5	3	2	1.75
IV	Mobile Robots Lab	1	3	2.25	2.5	2.5	2.5	2	-	-	-	-	1	1.5	3	1.5	1.5
IV	Battery Management	3	3	1.75	2	2	1.5	2	0	0	0	0	0	2	3	1.75	0.5

	System																
IV	Battery Management System Lab	1	3	1.75	2	2	1.5	2	0	0	0	0	0	2	3	1.75	0.5
IV	Database Management System	3	3	3	0.5	1	-	-	-	-	-	-	-	-	0.5	0.5	-
IV	Database Management System Lab	1	3	3	3	1.5	1.5	-	-	-	-	-	-	-	3	2	0.5
V	Kinematics of Machines	3	3	2.4	2.6	2.4	2.2	0.6	0.4	0.2	0.4	0.2	0.6	2.4	3	2.4	2.6
V	Fluid Mechanics	3	3	2.25	2.25	2.25	1.5	1	1	1	1	1	1	2.5	0.75	3	2.25
V	Applied Thermodynamics	3	3	2.25	2.75	2.25	1.75	1.25	1.25	0.25	0	0.25	0.25	2.5	1	3	2.5
V	Biology for Engineers	3	3	2.25	2.25	2.25	1.5	1	1	1	1	1	1	2.5	0.75	3	2.25
V	Power Plant Engineering	3	3	1.75	2	2.25	1.5	2	2	-	-	-	2	2.25	0.75	3	2.25
V	Hydrogen and Fuel Cells	3	3	1	2	3	2	3	3	1	-	-	-	3	3	1.5	0.5
V	Non-Conventional Machining	3	3	2.25	2.5	2.5	2.25	1.25	-	-	-	-	-	2.5	1.75	1.25	-
V	Plant Layout and Material Handling	3	3	1.75	1.5	2	1.75	1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5
V	Industrial Safety Engineering	3	3	_	-	-	-	2	2	2.25	2.5	2.5	2.25	2.5	0.75	3	2.25
V	SEC-III (MATLAB)	2	3	2.75	2.75	2.25	3	0.5	-	0.25	-	1	1.5	1.5	3	2.75	0.25
V	Kinematics of Machines Lab	1	3	2.4	2.6	2.4	2.2	0.6	0.4	0.2	0.4	0.2	0.6	2.4	2.25	2.75	1.5
V	Fluid Mechanics Lab	1	3	2.25	2.25	2.25	1.5	1	1	1	1	1	1	2.5	0.75	3	2.25
V	Applied Thermodynamics	1	3	2.25	2.75	2.25	1.75	1.25	1.25	0.25	0	0.25	0.25	2.5	1	3	2.5

	Lab																
V	Industrial Training - I	1	3.0	2.5	2.5	2.3	1.5	-	1.3	0.5	1.3	1.0	1.8	2.3	2	2	2.5
V	Mechanics of Robot	3	3	1.5	1.75	1.25	1.75	0.75	1.5	-	-	-	-	2.25	3.0	2.0	1
V	Mechanics of Robot Lab	1	3	2	2	2	1	1	1	1	-	-	1	3	3.0	2.0	0.5
V	Power train Design	3	3	1.75	2.5	2.5	2.5	-	1.5	-	-	-	1.5	2.25	3	2	0.25
V	Power train Design Lab	1	3.00	2.67	2.50	2.50	2.50	1.00	1.75	-	-	-	1.00	2.25	3	2	0.25
V	Data Structure & Algorithm	3	3	3	1	2.25	2.25	-	-	1	2.25	2.25	1	1	3	2	1
V	Data Structure & Algorithm Lab	1	3	0.25	1.75	1.25	0.25	0.5	-	-	-	-	-	-	3	1	0.5
VI	Dynamics of Machines	3	3	2.25	2.5	2.25	2	0.5	0.25	-	0.5	0.25	0.75	2.25	3	2.5	0.25
VI	Fluid Machines	3	3	2.5	2.5	2.25	1.75	0.75	0.25	-	0.5	0.25	-	1	3	2.75	-
VI	Design of Machine Elements	3	3	2.25	2.25	2.25	1.5	1	1	1	1	1	1	2.5	0.75	3	2.25
VI	Instrumentation and Control Engineering	3	3	3	3	3	3	3	2	1	1	1	1	3	-	3	2
VI	Fluid Power System	3	3	1.75	2.5	2	2.25	-	-	-	-	-	-	2	0.75	3	2.25
VI	Design for Manufacturing & Assembly	3	3	2.7	2.7	2.3	2.0	-	-	-	-	-	-	2.5	3	0.75	0.75
VI	Supply Chain and Logistic Management	3	3	-	-	-	1.5	2.5	-	2.5	2.25	1	3	2.25	1	-	-
VI	Finite Element Methods	3	3	1.75	1.5	2	1.75	1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5
VI	Nano-Technology and Surface Engineering	3	3	1.5	2	2	2.25	1	0.5	0	0.25	0	1.25	2.75	0.75	3	2.25
VI	SEC-IV (Digital	2	3	2.75	2.75	2.25	3	0.5	0.5	0.25	-	0.5	1	1	3	2.75	0.5

	Manufacturing)																
VI	Dynamics of Machines Lab	1	3	2.25	2.5	2.25	2	0.5	0.25	-	0.5	0.25	0.75	2.25	3	2.5	0.25
VI	Fluid Machines Lab	1	3	2.5	2.5	2.25	1.75	0.75	0.25	-	0.5	0.25	-	1	3	2.75	-
VI	Design of Machine Elements Lab	1	3	2.25	2.25	2.25	1.5	1	1	1	1	1	1	2.5	0.75	3	2.25
VI	Instrumentation and Control Engineering Lab	1	3	2	2.75	2.75	2	1.25	-	0.25	0.25	0.5	0.5	3	0.75	3	2.25
VI	Robot Operating andControl Systems	3	3.0	1.5	1.8	1.0	2.8	0.8	2.0	0.5	0.8	0.8	0.8	2.0	0.75	3	2.25
VI	Robot Operating and Control Systems Lab	1	3	2	2	1.75	2	1	-	-	-	1	-	2.75	2.75	2.75	2
VI	EV Charging Infrastructure Technology	3	3.0	1.5	1.8	1.0	2.8	0.8	2.0	0.5	0.8	0.8	0.8	2.0	3	1.75	0.5
VI	EV Charging Infrastructure Technology Lab	1	3.0	1.5	1.8	1.0	2.8	0.8	2.0	0.5	0.8	0.8	0.8	2.0	3	1.75	0.5
VI	Data Visualization	3	3	2	1	0.5	-	-	-	-	-	-	-	1	0.5	1	0.5
VI	Data Visualization Lab	1	3	2	1	0.5	0.5	-	-	-	-	-	-	1	0.5	0.5	1
VII	Industrial Engineering	3	3	-	-	-	1.75	2	1	2	3	3	3	2.5	3	2	0.25
VII	Heat and Mass Transfer	3	3	2	2.75	2.75	2	1.25	0	0.25	0.25	0.5	0.5	3	0.75	3	2.25
VII	Automation in Manufacturing	2	3	2.25	1.5	1.5	1.75	-	-	-	1.75	2	2.7	2.25	3	1.75	0.5
VII	Machine Learning for Mechanical Engineering	1	3	2.25	1.5	1.5	1.75	-	-	-	1.75	2	2.7	2.25	3	1.75	0.5
VII	Renewable Energy	3	3	2	2.5	2.5	1	1.5	1.5	0	0	0.25	0	2.75	0.75	3	2.25

VII	Rapid Manufacturing	3	3	1.5	1.25	1.5	2.75	1.5	0.5	0.25	_	_	0.75	2.25	3	1.25	0.25
	Technologies		5	1.0	1.25	1.0	2.75	1.0	0.5	0.25			0.75	2.25	5	1.20	0.25
VII	Work Study	3	3	2	2.75	2.75	2	1.25	0	0.25	0.25	0.5	0.5	3	1	-	-
VII	Mechatronics	3	3	1.75	1.5	2	1.75	1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5
VII	Chassis Design	3	3	2	2.75	2.75	2	1.25	0	0.25	0.25	0.5	0.5	3	0.75	3	2.25
VII	Heat and Mass Transfer Lab	1	3	2	2.75	2.75	2	1.25	0	0.25	0.25	0.5	0.5	3	0.75	3	2.25
VII	Automation in Manufacturing Lab	2	3	2.25	1.5	1.5	1.75	1	1	1	1.75	1.25	2.25	2.25	3	1.75	0.5
VII	Machine Learning for																
	Mechanical Engineering Lab	2	3	2.25	1.5	1.5	1.75	-	-	-	1.75	2	2.7	2.25	3	1.75	0.5
VII	Industrial Training-II	1	3.0	2.5	2.5	2.3	1.5	-	1.3	0.5	1.3	1.0	1.8	2.3	2	2	2.5
VII	Capstone Project	2	3.0	2.5	2.5	2.3	1.5	-	1.3	0.5	1.3	1.0	1.8	2.3	2	2	2.5
VII	Cognitive Robotics	3	3.0	1.5	1.8	1.0	2.8	0.8	2.0	0.5	0.8	0.8	0.8	2.0	3	1	0.25
VII	Cognitive Robotics Lab	1	3.0	1.5	1.8	1.0	2.8	0.8	2.0	0.5	0.8	0.8	0.8	2.0	3	1	0.25
VII	Modelling and Simulation of EHV	3	3.0	1.5	1.8	1.0	2.8	0.8	2.0	0.5	0.8	0.8	0.8	2.0	3	1.5	0.5
VII	Modelling and Simulation of EHV Lab	1	3.00	1.50	1.75	1.00	2.75	0.75	2.00	0.50	0.75	0.75	0.75	2.00	3	1.5	0.5
VII	Software Engineering	3	3	1.5	1	2	1.5	1	-	1	1	-	1	0.75	0.5	1	1
VII	Software Engineering Lab	1	3	2	2	2	1	-	-	-	0.25	0.75	0.75		1.5	-	-
VIII	Operation Research Techniques	3	3	2	2.75	2.75	2	1.25	0	0.25	0.25	0.5	0.5	3	3	2	0.5
VIII	Design of Thermal Systems	3	3	2	2.5	2.5	1	1.5	1.5	0	0	0.25	0	2.75	0.75	3	2.25

VIII	Advance Automotive Electronics	3	3	0.5	1.5	0.5	2.75	1.75	0.5	0.5	0	0	0	2	3	2	0.25
VIII	Lean enterprise & Advanced Manufacturing Technologies	3	3	2	2.25	2.25	2.25	0.5	1	0.25	1	0.5	1	2	1	1	-
VIII	Non-Destructive Evaluation & Testing	3	3	1.75	1.5	2	1.75	1.25	1.25	1.25	2	1.5	2.5	2.5	3	1.75	1.5
VIII	Biomaterials	3	3	1.75	1.75	2	1.5	2	3	0.5	0	0	0	2.25	0.75	3	2.25
VIII	Entrepreneurship & Digital Product Management	2	2	3	2	1	1.5	2.5	-	-	-	1	2	2.5	3.0	2.0	1.5
VIII	Research Project/ Dissertation	1 2	3.0	2.5	2.5	2.3	1.5	-	1.3	0.5	1.3	1.0	1.8	2.3	2	2	2.5

Annexure I (Program Name) Course Plan

Course Title	:			Course	e Code:	
Total Credit	s: L	Т		P	CL	Hour/Week
Course Con	tent:					
Unit	Content	t	No. of	Hours	Mode	of Delivery
1						
2						
3						
4						
5						
6						
I		Total Hours				

Note – L: Lecture Hour/week, T: Tutorial Hour/week, P: Practical Hour/week, CL: Clinical Hour/week

]

Annexure II

Entry, Exit Points

To bring major reforms in the Higher Education System, National Education Policy (NEP) 2020 has provided a system of multiple entry and exit in academic programs. In this system the students shall be free to choose their programs and academic pathways in Higher Education that will support the Academic Bank of Credit (ABC). Multiple Entry and Exit System (MEES) are the fundamental recommendations of University Grants Commission (UGC), to encourage flexible learning in Higher Education Institutions (HEIs) which is important for life- long learning of the students and to choose their academic path leading to the award of certificate, diploma and degree.

Hence the Entry, Exit points for our program will be as per the guidelines laid down by UGC and will be subjected to change in future as per UGC decisions.